
CST8177

bash Scripting
Chapters 13 and 14 in Quigley's

"UNIX Shells by Example"

bash String Operators
● These are called Variable Modifiers and Variable

Expansion Substrings in the textbook (Page 823 to
828)

● They are the string operators that rely upon the
${ ... } form of variable expansion.

● One group is indicated by an operator following a
colon : such as :x to remove the leading x characters
from a string (strings are counted from 0).

● The other string operator group uses % and #.
● All are of the general form ${variable??word}

bash String Operators

:- use word if variable is null or not set, else use
variable

:= as above, but also set variable to word

:+ use word if variable is set and not null, else
nothing (opposite of :-)

:? print word and exit from the shell if variable is
null or not set

:num return the substring from num to the end,
counting from 0

:
num:len

return the substring starting at num for len
characters

•${variable:?word}

bash String Operators

% matches the smallest trailing portion of the
value of variable to word and deletes it

%% same as %, but the largest

same as %, but leading, not trailing

same as %% but leading

•${variable%?word}
•${variable#?word}

Typical Usages

player=${somevar:-"default"};
● If player is undefined it becomes "default"

player=${player:2}
● player is now "fault"

player=${player:3:2}
● player is now "lt"

bash String Operators

● There is also ${#variable}, which returns the length
of the string in variable.

● It can also be used to determine the number of active
elements in an array: ${#array[*]}.

● For $* or $@, use $# for the number of positional
parameters.

● The array subscripts * and @ are subtly different:
● * elements in double quotes form a single token

(i.e. "a b c d")
● @ elements in double quotes form a list of tokens (i.e.

"a" "b" "c" "d")

bash Parameters (parms),
Arguments (args), and Arrays

Pages 59, 838, 874 to 877 in the textbook

Arrays
● An array is a collection of items all of the same sort,

stored in a single variable. Think, perhaps, of eggs in
a 12-element array called an egg carton.

● Arrays count from 0. You will forget this, usually at
the worst possible time, so try hard to remember:

Arrays count from zero!
● To declare an array: declare -a myArray1
● To initialize:

declare -a myArray1=(1 2 3 4 5 6)

declare -a myArray2
myArray2=(1 2 3 4 5 6)

declare -a myArray3
read -a myArray3
[stdin] 1 2 3 4 5 6 [ENTER]

Arrays: Use and Length

● To use:
${myArray[3]} # one element
${myArray[$i]} # one element
${myArray[*]} # all elements

● To get the length:

declare -a myArray=(1 4 9 16 25)
${#myArray[*]} # returns 5 elements
${#myArray[3]} # returns 2 characters

Setting and Unsetting Arrays

declare -a myArray=(1 2 3 4 5 6)
myArray[3]=9 # 1 2 3 9 5 6
myArray[$i]=8 # if i = 0 then

8 2 3 9 5 6

someArray=("a” "b” [3]="c” "d”)
from index=[0]: "a” "b” - "c” "d”

 # note that element 2 is undefined

unset myArray[1] # remove a single element
unset myArray # remove a whole array

Wait! There's a problem!
#! /bin/bash
declare -a newArray
declare -i i=0
newArray[0]=1
newArray[3]=99
echo newArray has ${#newArray[*]} elements

while ((i < 5)); do
 printf "[%d]=%s " $i ${newArray[$i]}
 let i++
done
printf "\n"

On stdout:

newArray has 2 elements
[0]=1 [1]=0 [2]=0 [3]=99 [4]=0

How can you tell defined and
undefined elements apart?

● This expression returns FALSE for a defined element:
((${newArray[0]:-"null"} == "null"))

● And it also returns TRUE for an undefined element:
((${newArray[1]:-"null"} == "null"))

For example, if we fix it and try again with:
if ((${newArray[$i]:-"null"} == "null")); then
 val="undef"
else
 val=${newArray[$i]}
fi
printf "[%d]=%s " $i $val

On stdout:

newArray has 2 elements
[0]=1 [1]=undef [2]=undef [3]=99 [4]=undef

Repaired script
#! /bin/bash
declare -a newArray
declare -i i=0
newArray[0]=1
newArray[3]=99
echo newArray has ${#newArray[*]} elements

while ((i < 5)); do
 if ((${newArray[$i]:-"null"} == "null")); then
 val="undef"
 else
 val=${newArray[$i]}
 fi
 printf "[%d]=%s " $i $val
 let i++
done
printf "\n"

Command Line Arguments

● When you run a script from the command line (after
turning on its execute permission with chmod after the
first save, and using the explicit ./ directory if it's
needed), each argument can be used inside your
script.

Command Line Arguments

$0 the script name as entered (with the
typed path)

$1 to $9 the first 9 positional arguments

$10 not argument 10, it's $1 with a 0
appended

${10} argument 10 and so on, more arguments

$# the number of positional arguments

$* and $@ all positional arguments

"$*" evaluates to "$1 $2 $3"

"$@" evaluates to "$1" "$2" "$3"

set set options and positional arguments ($1
etc.); use $- to see set options.

set -- unset all positional arguments

Some Special References

$$ the PID of this shell

$- "sh" options currently set

$? return code from the just-previous command

$! the PID of the most recent background job

bash Expressions

● There are two forms of logical expressions, the “old
kind” (Bourne shell compatible) and the new kind.

● Bourne shell (sh) compatible
[$a -eq $b]
[-e "filename"]

● bash version 2 and up
(($a == $b)) # numeric
[[-e "filename"]] # string

● The ((...)) form can also be used in place of the
let command.

● Hey, what's that -e thingie?

Special tests
-n STRING: the length of STRING is nonzero
-z STRING: the length of STRING is zero
-d FILE: FILE exists and is a directory
-e FILE: FILE exists
-f FILE: FILE exists and is a regular file
-g FILE: FILE exists and is set-GID
-k FILE: FILE exists and has its sticky bit set
-L FILE: FILE exists and is a symbolic link
-O FILE: FILE exists and is owned by the effective UID
-r FILE: FILE exists and read permission granted
-s FILE: FILE exists and has a size greater than zero
-t FD: file descriptor FD is opened on a terminal
-u FILE: FILE exists and its set-UID bit is set
-w FILE: FILE exists and write permission granted
-x FILE: FILE exists and exec permission granted
See test(1) for a complete list and description.

Command Expressions

● Also have two forms.
– The backquote (back-tick) form is supported by all

shells.
– Also supports the popular form derived from the

Korn shell: $(...).
● The advantage of the new style is that it can

more easily be nested, since no character
inside the parentheses is treated in a special
manner: escaping is not necessary.

declare -a files=($(ls $(echo $HOME)))
declare -a files=(`ls \`echo \$HOME\``)

Some Useful Quotations
"The only way to learn a new [scripting] language is by
writing [scripts] in it."
 - Brian Kernighan
"Debugging is twice as hard as writing the [script] in the
first place. Therefore, if you write the [script] as cleverly
as possible, you are, by definition, not smart enough to
debug it."
 -Brian Kernighan
Brian, along with Dennis Ritchie, were the developers of
the C programming language. It in turn is the ancestor of
most modern programming languages, including Java,
C#, C++, and many more.

"Make everything as simple as possible, but not simpler."
 - Albert Einstein
Everyone knows Albert, right? Relativity and all that?

