

CST8177

sed

The Stream Editor

The original editor for Unix was called ed, short for
editor. By today's standards, ed was very primitive.
Soon, sed was derived from it, especially for use in
scripts, since being able to edit a file under script
control is very powerful. Of course, sed also works great
on the command line.
sed is called the stream editor since it works from stdin
or from input files, and writes its output to stdout. That
is, it works on a stream of data through stdin/stdout.

Therefore:
sed - stream editor for filtering and transforming text

sed [OPTION]... [{sed script}] [input-file]...

The options need not be used. Some of the common
ones include:
 -n, --quiet, --silent
 suppress automatic printing of pattern space
 -e script, --expression=script
 add the script to the commands to be executed
 -f script-file, --file=script-file
 add the contents of script-file to the commands
 to be executed
 -r, --regexp-extended
 use extended regular expressions in the script.

Once of the most common uses for sed is to substitute one
string for another, using a regular expression:

stream -> | sed 's/bad/good/g' | stream ->
This will substitute good for bad in every occurrence (g is
for global) in the data stream.
The instruction to sed is s, for substitute. The / is to be
used as a separator, and is just the character that follows
the instruction - it can be any single character (except
newline) that cannot be found in the instruction. Both /
and + are common; these do the same thing:

stream -> | sed 's+bad+good+g' | stream ->
stream -> | sed 'sXbadXgoodXg' | stream ->
stream -> | sed 's@bad@good@g' | stream ->

The first item /bad/ is the regular expression to be
searched for. The second /good/ is the substitute value.
And the trailing g causes every /bad/ to be replaced
instead of only the first on each line.

You can combine several operations into a single sed:
... | sed 's/bad/good/g; s+red+green+' | ...

This will substitute good for bad in every occurrence (g is
for global) in the data stream and replace the first red per
line with green. Note well the semicolon.
You can also do the same with the -e:

sed -e 's/bad/good/g' -e 's+red+green+'
A collection of sed commands is known as a sed script,
and is not the same as a bash script:
[Prompt]$ ls -l sedscr
-rw-rw-r--. 1 allisor allisor 26 (date) sedscr
[Prompt]$ cat sedscr
s/bad/good/g
s+red+green+
[Prompt]$ echo bad red bad red | sed -f ./sedscr
good green good red

sed command format
Commands for sed are in one of three forms:
1. with an optional multi-line address:
 [address]command
2. with an optional single line address:
 [line address]command
3. as a group with a required address:
 address {
 command1
 command2
 command3
 ...
 }
The third form is usually only found in sed scripts.

Addresses
You can address a single line with a line number. For
example, to delete the first line of a file:
[Prompt]$ cat file1
line1
line2
[Prompt]$ sed '1d' file1
line2
[Prompt]$ sed 'd' file1 # note this!
[Prompt]$
The delete command is d, and the first example uses the
address 1 with it to delete the first line. Note especially
the second example, where the default is all lines!
A range of lines use comma (file2 has 3 lines):
[Prompt]$ sed '1,2d' file2
line3

Addresses, continued
You can also address lines with a regex, which must be
enclosed in forward slashes /.../:
[Prompt]$ cat file2
first line
second line
line3
[Prompt]$ sed '/^line/d' file2
first line
second line
You can also combine line numbers and a regex as in
'1,/^$/d' where all lines from the start to the first empty
line will be deleted.
The last line of the file can be represented by $ so that 2,$
would delete all but the first line:
[Prompt]$ sed '2,$d' file2
first line

Substitute command
[address]s!regex!replacement!flags

You've already seen the global flag, g. The others are n, a
number, requesting that the nth instance of the regex be
replaced (default 1), p to print (for example, if using -n),
and w file to write to the named file in addition to
stdout (unless -n).

address as above

s the substitute command itself

! the argument separator

regex the basic or extended (with -r) regular
expression

replacement the replacement string

flags optional: n, g, p, w file

Substitute regex and replacement
The regex is the same as grep. By using the -r option with
sed, you can use extended regex instead of basic regex.
You can also use tags (remember tags?) to repeat parts of
the regex match into the replacement string.
The replacement string is often just a string, but you can
reference tags by \1, \2, etc. Where the nth tag is taken
from the matching characters of the regex:
Prompt$ echo "a.b 3.4" | \ # European decimal
 sed -r 's!([0-9]+)\.([0-9]+)!\1,\2!'
a.b 3,4
You can also use & in the replacement string, which uses
the whole of the match in the replacement. To convert
integers to be floating-point (real) values:
Prompt$ echo "a.b 3 4" | sed -r 's![0-9]+!&.0!g'
a.b 3.0 4.0
Escape & with \ if you do not want this to happen.

Some commands
No address

comment to the end of the line, quote, or -e

Zero or one address

a text append text after the current line

i text insert text before the current line

Both append and insert require that you escape all
embedded newline characters.

r filename append text read from filename

Samples
[Prompt]$ cat file1
aaa
bbb
ccc
[Prompt]$ sed '2,3d' file1
aaa
[Prompt]$ sed '#2,3d' file1
aaa
bbb
ccc

Samples
[Prompt]$ sed '2ixxx' file1
aaa
xxx
bbb
ccc
[Prompt]$ sed '2ayyy' file1
aaa
bbb
yyy
ccc

Samples
[Prompt]$ cat file2
ddd
eee
fff
[Prompt$ sed '$rfile2' file1
aaa
bbb
ccc
ddd
eee
fff

Some commands with Address ranges
c text replace the selected lines with text,

newlines as in append/insert above

d delete lines (default: all lines)

l list the current line in a "visually
unambiguous" form

s/regex/repl/ substitute repl for regex

y/from/to/ translate the characters in from to the
corresponding character in to (like tr)

Samples
[Prompt]$ cat file3
A test line
^B
[Prompt]$ sed -n 'l' file3
A test line$
^B \002$

[Prompt]$ sed '2d' file3
A test line

[Prompt]$ echo abcdef | sed 'y/abc/123/'
123def
[Prompt]$ echo abcdef | sed 'y/def/456/'
abc456
[Prompt]$ echo abcdef | sed 'y/ace/789/'
7b8d9f

