

CST8177

awk

The awk program is not named after the sea-bird (that's
auk), nor is it a cry from a parrot (awwwk!). It's the
initials of the authors, Aho, Weinberger, and Kernighan.
It's known as a pattern-matching scripting language,
and derives from sed and grep, who both have ed, the
original Unix editor, as their ancestor.
We will use the GNU version of awk, known (of course)
as gawk (there's even a version called mawk, for
Microsoft platforms).
For convenience, both the awk and gawk names are
supported by Linux, as links to the same program
executable.

awk [options] -f program-file file ...
awk [options] program-text file ...

The program-text is always in the form:
[selection] { action }

and is most usually enclosed in single quotes.

The options need not be used. Some of the common
ones include:

-F fs --field-separator fs
Use fs for the input field separator (the value of
the FS predefined variable) instead of a space.
See also the $OFS (output field separator) variable.

-v var=val --assign var=val
Assign the value val to the variable var before
execution of the script begins.

-f program-file --file program-file
Read the source from the file program-file,
instead of from the first command line argument.
Multiple -f options may be used.

There are many more, but we will focus on these three.

Getting started
Let's try some awk on the password file. Since it uses ':' to
separate fields, we'll have to use -F ':'.
[Prompt]$ awk -F ':' '{ print $1 }' /etc/passwd
root
bin
...
user1

Oops, rather too many. Now select only those with UIDs of
500 or more:
[Prompt]$ awk -F ':' '{ if ($3 >= 500) \

print $1}' /etc/passwd
nfsnobody
allisor
test1
test2
user2

Let's look at these two awk "programs":
awk -F ':' '{ print $1 }' /etc/passwd

There's our -F to change from the default separator
(spaces or tabs) to the ':' we need, followed by '{ print
$1 }' which is the program, and finally the filename we're
working with, /etc/passwd.
The program is in single quotes, to keep the shell from
interfering. Enclosed in curly brackets, we have a single
statement, print $1. In awk, we refer to the tokens of an
input line just like command-line arguments. The only
difference is that $0 refers to the whole line at once.
This program, therefore, tells awk to print just the first
field, the user id (account name, whatever), from each line
that matches the omitted regex (that is, all lines is the
default selection).

The second awk program uses an if statement as well.
if ($3 >= 500) print $1

It looks reasonable enough: print the user id only if field 3
(the UID) is at least 500. That is, only print the user
accounts (plus that peculiar nfsnobody that some of us
have: it's UID on this system is 4294967294).
We can also use a regex with awk to select the lines we
want:
...]$ awk -F ':' '/^[^:]*:[^:]*:[5-9][0-9][0-9]/ \
 { print $1 }' /etc/passwd
allisor
test1
test2
User2
That regex chooses all UIDs from 500 to 999. I know
which of these I prefer.

Instead of a regex, you can use a relational expression:
[Prompt]$ awk -F ':' '$3 >= 500 && $3 < 1000 \

{ print $1 }' /etc/passwd
allisor
test1
test2
user2

As usual with Linux tools, awk has many ways to
accomplish a result.
What would this look like as a script? As an awk file?
Here's an awk file execution. No execute permission is
needed, since we call awk to process it.
[Prompt]$ awk -F ':' -f awk0 /etc/passwd
allisor
test1
test2
user2

Here is the awk0 file:
$3 >= 500 && $3 < 1000 { print $1 }

And a corresponding bash script.
#! /bin/bash
cat /etc/passwd | while read line; do
 a3=$(echo $line | cut -d ':' -f 3)
 if (($a3 >= 500 && $a3 < 1000)); then
 echo $(echo $line | cut -d ':' -f 1)
 fi
 done
exit 0

Hmmm. Quite a difference, isn't there?

Oh, you want an executable file and for the file to be an
argument? Then chmod +x this as lu (list users):

awk -F ':' \
 '$3 >= 500 && $3 < 1000 { print $1 }' $*

Now run ./lu /etc/passwd

awk statements
An awk "program" is a series of statements, each of which
can select lines with a regex pattern, a relational
expression, or omit both to select all lines in the file. A
regex or expression preceded by '!' is inverted, selecting
those lines that do not match.
There are also special patters, like BEGIN and END, that
match before the first read and after end-of-file. There are
&& (AND) and || (OR) used to combine pattern elements
or relational expressions.
The selection pattern (if any) is followed by a series of
action statements inside a set of curly brackets. These are
generally simpler that similar bash script statements.
Do you need to write PDL for an awk program? Yes, but
only if it consists of more than a few patterns and/or
actions. You may choose to write PDL in all cases so that
you have a record of what you intended to do.

awk regex extensions
The regex expressions supported by awk are the extended
form as supported by egrep, with some additional features
supported particularly by awk:

\y matches the empty string at the beginning or end
of a word.

\B matches the empty string within a word.
\< matches the empty string at the start of a word.
\> matches the empty string at the end of a word.
\w matches any word-constituent character (letter,

digit, or underscore).
\W matches any character that is not part of a word..
\' matches the empty string at the beginning or end

of a buffer (string).

awk actions
Actions are enclosed in curly brackets {} and consist of
the usual statements found in most languages. The
operators, control statements, and input/output available
are patterned after those in the C programming language.
You have already seen the use of $0 and $1, $2, and so on,
and you've seen a simple if statement. The full form is:
if (conditional expression) statement-if-true \
 [else statement-if-false]

Combine several statements together in {} and use ';' to
separate commands:
[Prompt]$ awk -F ':' -v i=0 \
 '/^test/ { if ($3 >= 500) { print $1; i++ } \
 else continue } \
 END { print "i = " i }' /etc/passwd
test1
test2
i = 2

awk operators and functions
The assignment operators are the same as bash: = += -=
*= /=. You also have the normal arithmetic operators: + -
* / % ++ -- (includes pre- and post- forms). The
relational operators include the usual == != > < >= <= as
well the new ones ~ and !~ for regex matching/not
matching (put the regex on the right side of a regex match
only, within a pair of '/' characters). There are also () for
grouping, the && || ! operators, " " (space) for string
concatenation, plus others we won't likely use.
There are many pre-defined functions. A few of them are:

gsub(r, s [, t]) For each substring matching
the regular expression r in the string t, substitute the
string s, and return the number of substitutions. If t is
not supplied, use $0.

sub(r, s [, t]) Just like gsub(), but only the
first matching substring is replaced.

more functions
index(s, t) Returns the index of the string t in

the string s, or 0 if t is not present. This means that
character strings start counting at one, not zero.

length([s]) Returns the length of the string s, or
the length of $0 if s is not supplied.

strtonum(str) Examines str, and returns its
numeric value. If str begins with a leading 0, or a leading
0x or 0X, it assumes that str is octal or hexadecimal.

substr(s, i [, n]) Returns the substring of s
starting at index i. If n is omitted, the rest of s is used.

tolower(str) Returns a copy of the string str, with
all the upper-case characters in str translated to their
corresponding lower-case counterparts. Non-alphabetic
characters are left unchanged.

toupper(str) As for tolower(), but for upper-case.

awk control statements
if (condition) statement [else if statement] ...

[else statement]
while (condition) statement
do statement while (condition)
for (expr1; expr2; expr3) statement
for (var in array) statement
break
continue
delete array[index]
delete array
exit [expression]
{ statements }
statement ; statement

awk input statements
getline - get the next line from stdin into $0
getline < - get the next line from a re-directed file
getline var - get the next line into var
cmd | getline [var] - get lines from the cmd
next - Stop processing the current input record.

 The next input record is read and
 processing restarts from the first pattern
nextfile - Stop processing the current input file.

Like the bash while read, getline returns true (1) for
good input, false (0) for end-of-file, or -1 for an error.

Note that the true and false values are reversed from
bash; the awk commands are adjusted as required so
(for example) a while (getline new_line <$2) will
still loop until end-of-file.

awk output statements
print - print the current record to stdout
print expr - print the expression(s) to stdout
print >[>] - print/append to a re-directed file
printf fmt - print the formatted record to stdout, or

 with > or >>, print or append to the
 re-directed file

print | - print/append expression(s) to a pipe
printf fmt | - print/append a formatted record to a pipe

Special file names
When doing I/O redirection from either print or printf
into a file, or via getline from a file, awk recognizes
certain special shell filenames internally. These filenames
allow access to streams inherited from awk’s parent
process (usually the shell).
These file names may also be used on the command line to
name data files. These filenames are:

/dev/stdin The standard input.
/dev/stdout The standard output.
/dev/stderr The standard error output.

Note that these may be used on the command line for
any command, utility, built-in, script, or whatever;
they are not specific to awk.

A useful awk script
Let us suppose that we've been given an assignment to
write a script to list and sum file sizes for any given
directory plus, at the user's discretion, its sub-directories.
START fsize

PRINT column headers
FOR each line from an ls command

IF regular file
ADD size to total
COUNT file
PRINT size and name

ELSE IF directory
PRINT "<dir>" and name

ELSE IF line from -R
PRINT *** and the line

ENDIF
END FOR
PRINT total and file count

END fsize

ls -l $* | awk -v sum=0 -v num=0 '

BEGIN { # before starting
 print "BYTES", "\t", "FILE" }

NF == 8 && /^-/ { # 8 fields and file
 sum += $5
 num++
 print $5, "\t", $8 }

NF == 8 && /^d/ { # 8 fields and dir
 print "<dir>", "\t", $8 }

NF == 1 && /^.*:$/ { # subdirectories
 print "***\t", $0 }

END { # after end
 print "Total:", sum, "bytes in", num,
"files" }'

[Prompt]$./fsize.awk -R empty
BYTES FILE
*** empty:
59 arf
36 awk0
58 awk0.1
198 awk1
<dir> dir1
12 file1
12 file2
17 file3
10 not
*** empty/dir1:
23 file4
Total: 425 bytes in 9 files

An awk-ward shell script
#! /bin/bash
declare -a line
declare tot_bytes=0
declare tot_files=0
declare nf=0

create a temporary file
declare temp=$(mktemp)

put columns headers
echo -e "BYTES\tFILE"

ls -l $* | while read -a line; do
 nf=${#line[*]}
 if ((nf == 8)); then
 if [["${line[0]:0:1}" == "-"]]; then
 ((tot_bytes += ${line[4]}))
 ((tot_files++))
 echo -e ${line[4]} "\t" ${line[7]}
 elif [["${line[0]:0:1}" == 'd']]; then
 echo -e '<dir>\t' ${line[7]}
 fi
 fi
 if ((nf == 1)); then
 if echo ${line[0]} | grep -q '^.*:$'; then
 echo -e '***\t' ${line[0]}
 fi
 fi
write intermediate values to temp file
 echo $tot_bytes $tot_files > $temp
done

read back final intermediate values
read tot_bytes tot_files < $temp

remove temporary file
rm -f $temp

now print the totals
echo Total: $tot_bytes bytes in $tot_files files

[Prompt]$./fsize.sh -R empty
*** empty:
59 arf
36 awk0
58 awk0.1
198 awk1
<dir> dir1
12 file1
12 file2
17 file3
10 not
*** empty/dir1:
23 file4
Total: 425 bytes in 9 files

