
More Scripting and Regular Expressions

Todd Kelley
kelleyt@algonquincollege.com

CST8207 – Todd Kelley 1

 Regular Expression Summary

 Regular Expression Examples

 Shell Scripting

2

 Do not confuse filename globbing and regular
expressions: they use similar characters to mean
different things

 filename globbing is for the shell in a command
line, to match against existing pathnames in the
current directory

 regex are used by vi, sed, awk, grep, and others,
for matching patterns in any source of text, such as
the contents of a file, or standard input

CST8177 – Todd Kelley 3

 ls a*.txt # this is filename globbing
◦ matches existing filenames in current directory beginning

with 'a', ending in '.txt'

 grep 'aa*' foo.txt # regular expression
◦ matches strings in foo.txt beginning with 'a' followed by

zero or more 'a's

◦ the single quotes protect the '*' from filename globbing

 Be careful with quoting:
◦ grep aa* foo.txt # no single quotes, bad idea

 shell will try to do filename globbing on aa*, changing it into
existing filenames that begin with aa before grep runs: we don't
want that.

CST8177 – Todd Kelley 4

 BASH globbing: looks through existing filenames for matches

 grep regexp: looks through lines text for matches

 BASH: *.txt

 regexp: ^.*\.txt$ OR ^.*[.]txt$

 BASH: [abc].txt (don't use ranges unless POSIX)

 regexp: ^[abc]\.txt$ (don't use ranges unless POSIX)

 BASH: ????.txt

 regexp: ^....\.txt$

CST8177 – Todd Kelley 5

 Regular expressions match the first and
longest possible match

 First and longest, in that order

 Remember the order: First comes first, then
longest

 if the string is aaabbaaaaaa, a n d t h e
r e g u l a r e x p r e s s i o n i s aa* then
◦ the leading aaa is first and longest match

◦ the leading a is a first possible match, but not
longest

◦ the trailing aaaaaa is longest possible, but not first

CST8177 – Todd Kelley 6

 . matches any single character

 [xyz] matches any single character inside []

 [^xyz] matches any single character not
inside []

 [a-z] ranges are dangerous: use POSIX
character classes instead (see below)

 ^ matches empty string at beginning of line

 $ matches empty string at the end of line

CST8177 – Todd Kelley 7

 [:alnum:] a – z, A - Z, and 0 - 9

 [:alpha:] a - z and A - Z

 [:cntrl:] control characters

 [:digit:] 0 - 9

 [:lower:] a - z

 [:print:] visible characters, plus [:space:]

 [:punct:] Punctuation characters and other symbols
◦ !"#$%&'()*+,\-./:;<=>?@[\\\]^_`{|}~

 [:space:] White space (space, tab)

 [:upper:] A - Z

 [:xdigit:] Hex digits: 0 - 9, a - f, and A - F

 [:graph:] (0x21 - 0x7E) (we won't use)

CST8177 – Todd Kelley 8

 POSIX character classes go inside […]

 examples
◦ [[:alnum:]] matches any alphanumeric character

◦ [[:alnum:]}] matches one alphanumeric or }

◦ [[:alpha:][:cntrl:]] matches one alphabetic or control
character

 Take NOTE!
◦ [:alnum:] matches one of :,a,l,n,u,m

◦ [abc[:digit:]] matches one of a,b,c, or a digit

CST8177 – Todd Kelley 9

 * means match the preceding regular
expression zero or more times

 The following might not be supported in non-
extended regex, depending on the implementation

 For extended regex, leave out the \

 \? means match zero or one times

 \+ means match one or more times

 \{n\} means match exactly n times

 \{n,\} means n or more times

 \{n,m\} means at least n times, but not more than
m times

CST8177 – Todd Kelley 10

 this is an extended regular expression
feature: note the backslash

 can do this kind of thing in grep with –e
◦ example: grep –e 'abc' –e 'def' foo.txt

◦ matches abc or def

 this is advanced for us, for now

 \| is an infix "or" operator

 a\|b means a or b but not both

 aa*\|bb* means one or more a's, or one or
more b's

 for extended regex, leave out the \

CST8177 – Todd Kelley 11

 repetition is tightest
◦ xx* means x followed by x repeated, not xx

repeated

 concatenation is next tightest
◦ aa*\|bb* means aa* or bb*

 The following are for extended regular
expressions (we won't worry about them for
now)

 alternation is the loosest or lowest
precedence

 Precedence can be overridden with grouping
(next slide)

CST8177 – Todd Kelley 12

 Extended regular expression feature
(advanced for us, for now)

 \(and \) can be used to group regular
expressions, and override the precedence
rules

 abb* means ab followed by zero or more b's

 a\(bb\)*c would mean a followed by zero or
more pairs of b's followed by c

 abbb\|cd would mean abbb or cd

 a\(bbb\|c\)d would mean a, followed by bbb
or c, followed by d

CST8177 – Todd Kelley 13

 To remove the special meaning of a
metacharacter, put a backslash in front of it

 * matches a literal *

 \. matches a literal .

 \\ matches a literal \

 \$ matches a literal $

 \^ matches a literal ^

CST8177 – Todd Kelley 14

 Another extended regular expression feature
(advanced for us, for now)

 When you use grouping, you can refer to the
n'th group with \n

 \(..*\)\1 means any sequence of one or more
characters twice in a row

 The \1 in this example means whatever the
thing between the first set of \(\) matched

CST8177 – Todd Kelley 15

 grep –-color=auto 'expr'

 the above will show you the parts of the
string that match expr (all matches, not just
the first)

CST8177 – Todd Kelley 16

 So far, we have the International Script Header:
◦ The interpreter magic, or "shebang": #!/bin/sh –u

◦ Set the PATH

◦ Set the umask

◦ Set the locale

 We then follow the header with commands like the
ones we type at the shell prompt.

 The stdin, stdout, stderr of the shell script are the
same those of the commands inside.

CST8177 – Todd Kelley 17

 Today we'll add three scripting techniques
◦ positional parameters and passing arguments to

shell scripts

◦ interacting with the user

◦ if statements

CST8177 – Todd Kelley 18

 $# holds the number of arguments on the
command line, not counting the command
itself

 $0 is the name of the script itself

 $1 through $9 are the first nine arguments
passed to the script on the command line

 After $9, there's ${10}, ${11}, and so on

 $* and $@ denote all of the arguments

 "$*" is one word with spaces in it

 "$@" produces a list where each argument is
a separate word

CST8177 – Todd Kelley 19

#!/bin/sh –u

PATH=/bin:/usr/bin ; export PATH

umask 022

unset LC_ALL # unset the over-ride

variable

LC_COLLATE=en_US.utf8 ; export LC_COLLATE # sort by character

set

LC_CTYPE=en_US.utf8 ; export LC_CTYPE # handle multi-byte chars

LANG=en_US.utf8

echo "The number of arguments is: $#"

echo "The command name is $0"

echo "The arguments are $*"

echo "The first argument is: $1"

echo "The second argument is: $2"

echo "The third argument is: $3"

CST8177 – Todd Kelley 20

 to get input from the user, we can use the read
builtin

 read returns an exit status of 0 if it successfully
reads input, or non-zero if it reaches EOF

 read with one variable argument reads a line from
stdin into the variable

 Example:

#!/bin/sh

read aline #script will stop, wait for user

echo "you entered: $aline"

CST8177 – Todd Kelley 21

 Use the –p option to read to supply the user
with a prompt

 Example

#!/bin/sh –u

read –p "enter your string:" aline

echo "You entered: $aline"

CST8177 – Todd Kelley 22

 read var1 puts the line the user types into the
variable var1

 read var1 var2 var3 puts the first word of what
the user types in to var1, the second word into
var2, and the remaining words into var3

#!/bin/sh –u

read var1 var2 var3

echo "First word: $var1"

echo "Second word: $var2"

echo "Remaining words: $var3"

CST8177 – Todd Kelley 23

 Each command finishes with an exit status

 The exit status is left in the variable ? ($?)

 A non-zero exit status normally means
something went wrong (grep is an exception)

 non-zero means "false"

 A exit status of 0 normally means everything
was OK

 0 means "true"

 grep returns 0 if a match occurred, 1 if not,
and 2 if there was an error

CST8177 – Todd Kelley 24

if list1; then

 list2;

fi

 list1 is executed, and if its exit status is 0,
then list2 is executed

 a list is a sequence of one or more pipelines,
but for now, lets say it's a command

CST8177 – Todd Kelley 25

 A common command to use in the test list of
an if statement is the test command

 man test

 Examples:

 test –e /etc/passwd

 test "this" = "this"

 test 0 –eq 0

 test 0 –ne 1

 test 0 –le 1

CST8177 – Todd Kelley 26

if test "$1" = "hello"; then

 echo "First arg is hello"

fi

if test "$2" = "hello"; then

 echo "Second arg is hello"

else

 echo "Second arg is not hello"

fi

CST8177 – Todd Kelley 27

Todd-Kelleys-MacBook-Pro:CST8177-13W tgk$ ls -li /bin/test /bin/[

1733533 -r-xr-xr-x 2 root wheel 43120 27 Jul 2011 /bin/[

1733533 -r-xr-xr-x 2 root wheel 43120 27 Jul 2011 /bin/test

Todd-Kelleys-MacBook-Pro:CST8177-13W tgk$

 notice that [is another name for the test program:

if [-e /etc/passwd]; then

 echo "/etc/passwd exists"

fi

is the same as

if test –e /etc/passwd; then

 echo "/etc/passwd exists"

fi

CST8177 – Todd Kelley 28

$ [0 –eq 0]

$ echo $?

0

$ ["this" = "that"]

$ echo $?

1

$ ["this" = "this"]

echo $?

0

$ ["this" = "this"] # forgot the space after [

-bash: [this: command not found

$ ["this" = "this"] # forgot the space before]

-bash: [: missing ']'

CST8177 – Todd Kelley 29

