
Processes
Todd Kelley

kelleyt@algonquincollege.com

CST8207 – Todd Kelley 1

 testing scripts

 quoting

 from last lecture slides: crontab, anacron, at

2

 when you finish a script, you need to run it to
verify correct operation

 you're expecting certain things from your
script on certain runs
◦ example: it expects arguments and you supply

none – it should print an error message

◦ example: you supply the wrong number of
arguments – it should print an error message

 run your script with good input, and bad
◦ check that operation is correct for good and bad

◦ testing should "cover" all lines of code: every line of
the script runs at least once during all your testing

CST8177 – Todd Kelley 3

 test your script before you run the
assignment check program

 you need to be able to determine whether
your script is behaving as you intended

 use –x and/or –v to "watch" it execute:
◦ sh –x –u myscript.sh

CST8177 – Todd Kelley 4

 http://teaching.idallen.com/cst8207/13w/notes/320_shell_variables.html

 http://teaching.idallen.com/cst8207/13w/notes/440_quotes.html

 You want variables to be inside double
quotes, for two main reasons:
1. globbing characters inside the variable will not be used to

match filenames

2. if the variable is empty, without double quotes it vanishes
completely, and that's normally not what we want

CST8177 – Todd Kelley 5

 If a variable has a null value, as in
myvar=

both of the following result in an error, because myvar is empty

if [$myvar = something] ; then echo yes; fi

after variable expansion the above becomes

if [= something] ; then echo yes; fi

 If we put the same variable in double quotes:
myvar=

both of the following do not result in an error (or any output)

if ["$myvar" = something] ; then echo yes ; fi

after variable expansion the above becomes same as

if ["" = something] ; then echo yes ; fi

CST8177 – Todd Kelley 6

