Name:	Lab Section:
Objective	es: To practice binary/octal/hexadicimal math and IEEE 754 conversions.
Referenc	es: ECOA2e Section 2.3, 2.4, 2.5, 2.5.3, 2.5.5, 2.5.6 and associated Chapter Slides; Class Notes http://teaching.idallen.com/cst8214/08w/
If under	lined space is given, put your answer on this question sheet. Circle answers on this sheet if indicated.
(stapled) Your ans	y problems, I give you the answer; that means you must <i>show all your work</i> on securely attached <i>separate</i> sheets. Your answers must be <i>in order</i> and each answer must be numbered <i>consecutively</i> . where must <i>demonstrate clearly</i> that you have a method for getting from the question to the correct answer the other way around). The answers to many of these questions are worked out in the Class Notes.
2.	Convert 16-bit <i>unsigned</i> 8000 ₁₆ to decimal 32,768 ₁₀ (no calculator allowed) Convert 16-bit <i>unsigned</i> A123 ₁₆ to decimal 41,251 ₁₀ (no calculator allowed – do the math) Convert 16-bit <i>unsigned</i> FFFF ₁₆ to decimal 65,535 ₁₀ (no calculator allowed – work smart, not hard) Circle the <i>positive</i> numbers (16-bit unsigned): 6FFF ₁₆ 7FFF ₁₆ 8000 ₁₆ 8001 ₁₆ 9FC5 ₁₆ A123 ₁₆ BFFF ₁₆ Add 16-bit <i>unsigned</i> ABCD ₁₆ to 7FFF ₁₆ and give the Result, Carry, and Overflow. Is the result correct? Add 16-bit <i>unsigned</i> 8A9C ₁₆ to ABCD ₁₆ and give the Result, Carry, and Overflow. Is the result correct? What happens mathematically to the value of a binary number if you "shift" the bits to the right one place by deleting the rightmost binary digit, e.g. 1100 ₂ > 0110 ₂
9. Š	What happens to the range of values possible in a word if you increase the word length by one bit, e.g. from eight bits to nine bits or from 100 bits to 101 bits?
11.	What happens to the value of a binary number if you "shift" the bits to the left two places by adding two zeros after the rightmost binary digit, e.g. 11001_2 > 1100100_2 What happens to the value of an octal number if you "shift" the number to the left one place by adding
12.	what happens to the value of a hexadecimal number if you "shift" the number to the left one place by adding one zero after the rightmost hex digit, e.g. 0xABC> 0xABC0
14. (Convert decimal 147.625 ₁₀ to IEEE 754 single-precision format hexadecimal 4313A000h Convert decimal 128.5625 ₁₀ to IEEE 754 single-precision format hexadecimal 43009000h
16. (Convert decimal 2004 ₁₀ to IEEE 754 single-precision format hexadecimal 44FA8000h Convert decimal -20.5 ₁₀ to IEEE 754 single-precision format hexadecimal C1A40000h Convert decimal -0.5 ₁₀ to IEEE 754 single-precision format hexadecimal BF000000h
19. (Convert decimal -1 ₁₀ to IEEE 754 single-precision format hexadecimal BF800000h Convert IEEE 754 single-precision format hexadecimal 438F0000h to decimal 286 ₁₀ Convert IEEE 754 single-precision format hexadecimal BF880000h to decimal -1.0625 ₁₀
	The IEEE 754 floating-point number 81234567h is negative. Without converting, quickly and easily give

the hexadecimal for the same number, only positive:

22.	The IEEE 754 floating-point number 7EDCBA98h is positive. Without converting, quickly and easily give the hexadecimal for the same number, only negative:
23	Without converting, quickly and easily circle all the IEEE 754 negative numbers:
23.	1837A654h 7A6A3B65h 87B5CDE2h 90A5B5EFh A0000037h D1B8765Ah F0000000h
24	In the simplified floating-point model used in the text, the significand can only store eight bits of
4 .	precision. Why can't the decimal value 128.5 be accurately represented in eight bits? (Section 2.5.3)
	precision. Why can't the decimal value 128.5 be accurately represented in eight bits: (Section 2.5.5)
	IEEE 754 single-precision floating-point can store numbers in the approximate range of -2^{127} to $+2^{127}$.
	Look up or use a calculator to express this range (approximately) as powers of ten (decimal):
	Zeon up of use a calculator to express and range (approximately) as powers of ten (decimal).
	What is the approximate decimal range (powers of ten) of IEEE 754 <i>double-precision</i> (64-bit) floating-
	point numbers (Figure 2.3, p.70)?
27.	What is floating-point overflow ? (p.70, Chapter 2 Slide 81)
28.	What is floating-point underflow ? (p.70, Chapter 2 Slide 81)
	(F ,
29.	What serious mathematical error can occur due to floating-point underflow? (Chapter 2 Slide 81)
	(
	Give a decimal example of a floating-point number that would cause overflow if you tried to represent in
	as an IEEE 754 single-precision floating-point number:
31.	Give a decimal example of a floating-point number that would cause underflow if you tried to represent
	it as an IEEE 754 single-precision floating-point number:
32.	Circle: True / False – decimal 1234.0 x 10 ³⁷ fits in IEEE 754 single-precision floating-point.
	Circle: True / False – decimal 0.00001 x 10 ⁴⁰ fits in IEEE 754 single-precision floating-point.
	Circle the values that fit in a 32-bit two's complement integer with no loss of range or precision:
	$2^{30}-3$ $2^{30}-1$ 2^{30} $2^{30}+1$ $2^{30}+3$ $2^{30}+2^{29}$ (These are all positive values.)
35.	Circle the values that fit in IEEE 754 single-precision floating-point with no loss of range or precision:
	$2^{30}-3$ $2^{30}-1$ 2^{30} $2^{30}+1$ $2^{30}+3$ $2^{30}+2^{29}$ (Hint: look at the binary significand.)
36.	Without converting, circle the sums that fit in IEEE 754 single-precision floating-point with no loss of
	range or precision: $2^{29}+2^{10}+2^9+2^0$ $2^{26}+2^0$ $2^{29}+2^{28}+2^{27}+2^{26}$ $2^{27}+2^{23}+2^1$ $2^{29}+2^{28}+2^2+2^1$
37.	Why do the decimal numbers $2,147,483,775_{10}$ (0x8000007F) and $2,147,483,648_{10}$ (0x80000000) both
	convert to the same IEEE 754 single-precision floating-point number 0x4F000000 that has decimal value
	$2,147,483,648.0_{10}$? (Hint: For a similar reason, in Section 2.5.3, the numbers 128 and 128.5 both convert
	to 128.0 when stored in the simplified floating-point format used in the text.)
38.	$Circle: True \ / \ False-floating \ point \ mathematics \ may \ not \ be \ associative \ or \ distributive. \ \ (Section \ 2.5.6)$
39.	What is the correct way to test that floating-point value \mathbf{x} is "equal" to zero? (p.72)
40.	Reread the introduction to this lab. For full marks, follow all the instructions carefully.