Name:	Lab Section:
Objecti	ives: To review important concepts in Chapters 3 and 4. Answer on this sheet where space is given.
Referen	ces: ECOA2e Section 2.6.3, 2.6.4, 3.2.1-3.2.4, 4.1-4.6, 4.8.1-4.9.1, 4.9.3, 4.10, 4.11.1-4.11.2 and associated Chapter Slides. Class Notes (via course home page): bit_operations.txt, text_errata.txt, etc.
this she	rlined space is given, put your answer on this question sheet, otherwise answer on paper. Circle answers on the tif indicated. On your answer paper, your answers must be in ascending order and each answer must be red. Not all questions may be marked – check all your answers against the answer sheet when it is posted.
1.	Give the range of unprintable ASCII "Control" characters in decimal and hexadecimal. (Section 2.6.3)
2.	How many bits are needed to represent the unprintable ASCII "Control" characters?
3.	What is the name and hexadecimal and decimal value of the first printable character (first non-Control character) in the ASCII character set?
4.	The ASCII code for \mathbf{Z} is decimal 90 (0x5A). Derive the code for \mathbf{CTRL} - \mathbf{Z} in decimal and hexadecimal:
5.	If the ASCII code for Z is decimal 90 (0x5A), what is the code for Y in decimal and hex?
6.	What ASCII character do you get if you subtract the ASCII code for Space from the code for lower-case m ? (see Table 2.7 p.79)
7.	Does the above subtraction transform work for all the lower-case ASCII letters?
8.	Represent the seven-bit ASCII character Z in eight bits using odd parity. (Section 2.6.3)
9.	Represent the seven-bit ASCII control character CTRL-Z in eight bits using odd parity.
10.	You look into memory and you see the value 0x5A5A. How can you tell if this is two ASCII letters or a numeric data value?
11.	How many bytes does it take to store a base Unicode character? (Section 2.6.4)
12.	Circle: True / False – the first 128 characters of Unicode (0x0000 to 0x007F) are the same as ASCII. (p.80)
13.	Construct a Boolean truth table for xyz + (xyz)' [where the prime mark indicates complement]. (p.155)
14.	Construct a Boolean truth table for $\mathbf{x}(\mathbf{y}\mathbf{z'}+\mathbf{x'}\mathbf{y})$ [where the prime mark indicates complement]. (p.155)
15.	Give both versions of deMorgan's Law (p.113):
16.	Using deMorgan's Law, write an expression for the Boolean complement of $\mathbf{x}(\mathbf{y'+z})$. (p.155 and Section 3.2.2

17.	Using deMorgan's Law, write an expression for the Boolean complement of xy+x'z+yz' . (Section 3.2.2-3.2.4
18.	Avoiding a Common Error: Use a truth table to show that $(xy)'$ is not equal to $x'y'$ and $(x+y)'$ is not equal to $x'+y'$. (i.e. "not red Jello" is much more specific than "not red and not Jello".) (bottom p.113)
19.	Express in hexadecimal the value stored in memory by each of the following C bitwise expressions:
20.	char $x = \sim 0x1$; char $x = \sim 0x10$; char $x = \sim 0 \& 0xAA$; int $x = \sim 0 \& 0xAA$; int $x = \sim 0 \& 0xAA$; char $x = 0x11 + 0xAA$; char
21.	Give (hex) a bit mask that will mask off (zero) everything except a MARIE opcode:
22.	Give (hex) a bit mask that will mask off (zero) everything except a MARIE address:
23.	Give a C language expression that will turn an ASCII Control character " ch " into the corresponding ASCII lower-case letter:
24.	How many address bits do you need to address byte-addressable 2Mx32 memory?
25.	How many address bits do you need to address word-addressable 2Mx32 memory?
26.	How many address bits do you need to address byte-addressable 4Mx16 memory?
27.	How many address bits do you need to address word-addressable 4Mx16 memory?
28.	Question 8, p.238: a) b) c) d)
29.	Question 9, p.238: a) b) c)
30.	Memorize the names and functions of the seven MARIE registers on p.191. Write the full names of the registers here:
31.	Circle: True / False – unlike MARIE, modern computers have multiple general-purpose registers. (p.192)
32.	Circle: True / False – unlike MARIE, the ISAs of modern computers have hundreds of instructions. (p.193)
33.	Memorize the meanings of the nine basic MARIE instructions in Table 4.2. Reproduce that table here: