
Lab 7 CST8214 Ian! D. Allen - Winter 2008

Name: ____________________________ Date: ________________________ Lab Section: ___________

Objectives: To review important concepts in Chapter 4 - MARIE. Answer on this sheet in the given spaces.

References: ECOA2e Section 4.1-4.6, 4.8.1-4.9.1, 4.9.3, 4.10, 4.11.1, 5.4.2 and associated Chapter Slides
Class Notes (via course home page at teaching.idallen.com/cst8214): text_errata.txt

Equipment: MARIE Simulator: free download from http://computerscience.jbpub.com/ecoa/2e and
the free Sun Java Run Time Environment

Put all answers on this question sheet in the spaces provided. Circle answers on this sheet if indicated. Not all
questions may be marked – check all your answers against the answer sheet when it is posted.

1. Reproduce here the one-line descriptions (no RTL/RTN) of the revised Instruction processing Cycle of

operations from the revised Section 4.9.1 (see the revised version in the Class Notes, file text_errata.txt):

1. ___

2. ___

3. ___

2. The third part of the Instruction Cycle is “Decode and Execute”. Where is the PC register pointing while this is

happening? __

3. Circle: True/False: The operand field of a MARIE instruction is always used to contain an address.

4. Define an instruction “mnemonic” (p.195): __

5. Another name for “binary instructions” is (p.195): __

6. The mnemonics that correspond to machine code are referred to as: __________________________________

7. Circle: True / False: every assembly language instruction corresponds to exactly one machine instruction.

8. The name of the program that converts mnemonic assembly language to its binary equivalent machine code is

(p.195, also Section 4.11): __

9. Give the hex for “Skip if AC less than zero”: ___

10. Give the RTL for “Add X”: ___

11. Give the RTL for “Jump X”: __

12. Suppose the program in Table 4.3 p.204 started at hex address AB5h. Give the seven 16-bit hex values for the

contents of memory:___

13. An assembler reads a source file and produces as output (p.206): _____________________________________

14. Circle: True/False: The first pass of a two-pass assembler builds the “symbol table”. (p.206-207)

15. Circle: True/False: The second pass of a two-pass assembler is used to fill in addresses using the symbol table.
(p.207)

CST8214 Lab 7 – March 18, 2008 Page 1 of 4

Lab 7 CST8214 Ian! D. Allen - Winter 2008

16. This section uses the MARIE simulator. You can download this program at home. Open the MARIE simulator

program and do the following using the given seven-line assembly language program:

Label Instruction

load x

add y

store z

halt

x, dec 32

y, dec ­15

z, hex 0

a) Type the adjacent seven-line MARIE assembly language program
into the MARIE simulator and save it. Remember where you put it.

b) Tell MARIE to assemble the saved program into object code
(machine code) and load it into the MARIE memory. Prepare to
single-step through the program.

c) Single-step through each instruction of the program and write the
contents of AC, IR, MAR, MBR and PC in the following table after
each instruction has been decoded and executed.

d) Be prepared to explain why the registers contain these values.

Remember that the PC always points to the next instruction when
decoding and executing the current instruction out of the IR. The
Instruction Cycle is always: fetch, increment, execute

Instruction AC IR MAR MBR PC

load x

add y

store z

halt

17. Hand-assemble the preceding seven-line assembly language program starting at hex memory address CF2h:

Hex Address Label Instruction Machine Code (hexadecimal)

CF2

CST8214 Lab 7 – March 18, 2008 Page 2 of 4

Lab 7 CST8214 Ian! D. Allen - Winter 2008

18. Copy the ten-line assembly-language program from Question 13 on page 239 and hand-assemble it (without

using MARIE) starting at hex memory location A1Fh (not at location 100 as shown in the text):

Hex Address Label Instruction Machine Code (hexadecimal)

A1F

19. Give the contents of the Symbol Table for the preceding ten-line assembly language program:

Symbol Name Hex Address of Symbol

20. Answer Question 12 p.239: __

21. Write the Assembly Language equivalents for Question 15a p.239:

i) ________________________ ii) ____________________________ iii) __________________________

CST8214 Lab 7 – March 18, 2008 Page 3 of 4

Lab 7 CST8214 Ian! D. Allen - Winter 2008

22. Read Address Modes, Section 5.4.2, and refer to Figure 5.3, Table 5.1, and Question 13 p.277.
Given the instruction LOAD 2000, determine the actual value loaded into the accumulator and fill in the
Addressing Mode table below if the index register R1 (used by “indexed mode”) contains the value 1200:

Memory

Address Contents

1200 2500

... ...

2000 2200

... ...

2200 2600

... ...

2800 1200

... ...

3200 3600

... ...

3600 2400

Addressing Mode
Value loaded in accumulator, AC,

after executing LOAD 2000

Immediate

Direct

Indirect

Indexed (with R1)

Note that most MARIE instructions are Direct Addressing. MARIE has
no Immediate or Indexed Addressing instructions and only two Indirect
Addressing instructions: AddI and JumpI. (MARIE has no SubI,
LoadI, or StoreI – a real computer ISA would be more consistent and
permit more address modes.)

23. Give the RTL/RTN for a new MARIE LoadI instruction:

24. Give the “value loaded into AC” for the four-element addressing mode table for Question 13, p.277:

Immediate: _____________ Direct: _____________ Indirect: _____________ Indexed: _____________

25. Give the “value loaded into AC” for the four-element addressing mode table for Question 14, p.277:

Immediate: _____________ Direct: _____________ Indirect: _____________ Indexed: _____________

26. Can I read all your answers clearly?

CST8214 Lab 7 – March 18, 2008 Page 4 of 4

