
Lab 9 CST8214 Ian! D. Allen – Winter 2008

Name: ____________________________ Date: ________________________ Lab Section: _______

Lab partner’s name: _____________________________________ Lab PC Number: ___________
Objectives: Understanding video memory and character mapping of CGA characters in ROM BIOS, using the

DOS debug command. Writing simple assembly-language programs using DOS debug.

Equipment: Bootable PC, monitor, keyboard, mouse, cables. MS DOS or Win 98 with DEBUG command.

You need a DOS command-line window for this lab. Either boot MSDOS, or restart Win98 in MSDOS mode
(command prompt only), or start a MSDOS command window inside Windows 98 (e.g. Run | command).

Ensure that the debug command is installed by typing its name at the DOS command prompt, and then use the Q
(Quit) command to exit debug. Use the Return or Enter key at the end of every command line you type:

C:\>debug
­? <­­ typing a question mark displays a help screen
­Q <­­ typing Q quits the debug program and returns you to the DOS prompt
C:\>

Intel Architecture Segment:Offset Memory Addressing

To use debug to address memory in an Intel x86 architecture, you need to understand an Intel segment and offset
address format. Because the original Intel x86 CPU chips only had 16-bit registers, a register could only address
216 memory locations. Intel devised a way to combine and overlap two 16-bit registers to allow 20 bits of
address, by shifting the contents of the first register left by four bits and adding it to the second register to
generate a 20-bit memory address. The shifted register is called the segment register and the added register is
called the offset register. An address is written in two 16-bit parts as segment:offset with a colon separating the
two parts, e.g. B800:0123. The effective 20-bit address is calculated as: B8000 + 0123 = B8123

Below are some examples of segment and offset, along with their calculated effective 20-bit memory
addresses. The 16-bit segment is always shifted left four bits before adding. Pay special attention to the last
entries in the table that all have different segments and offsets but all result in the same effective address:

16-bit Segment 16-bit Offset Shift Segment Left 4 bits and Add Offset Effective 20-bit Address

B800 0123 B8000 + 0123 = B8123

B800 1234 B8000 + 1234 = B9234

B800 FFFF B8000 + FFFF = C7FFF

B801 0011 B8010 + 0011 = B8021

B802 0001 B8020 + 0001 = B8021

B000 8021 B0000 + 8021 = B8021

A900 F021 A9000 + F021 = B8021

CST8214 Lab 9 – March 30, 2008 Page 1 of 8

Lab 9 CST8214 Ian! D. Allen – Winter 2008

Note that many, many different segment:offset pairs can generate exactly the same 20-bit effective memory
address. (How many?) In every case, the effective address is computed by shifting the segment address left by
four bits (one hex digit) and adding it to the offset register to generate a 20-bit memory address (five hex digits).

The debug utility requires that all addresses be entered in segment:offset format; so, if you are told to use the
20-bit address B8123 you must first turn B8123 into an equivalent segment:offset address, e.g. something like
B000:8123 or B812:0003 or B800:0123 (or any other equivalent segment:offset combination that adds
up to the given 20-bit address B8123). The debug utility can not use 20-bit addresses; convert them first.

1. Calculate whether B800:0123 and A813:FFF3 are equivalent 20-bit addresses (yes/no): ________

2. Calculate whether 0000:FFF0 and 0FFF:0000 are equivalent 20-bit addresses (yes/no): ________

3. Calculate whether 0101:0101 and 0000:1111 are equivalent 20-bit addresses (yes/no):_________

The DOS DEBUG Utility: Command List

The DOS debug utility allows you to view and modify the contents of DOS memory. The commands we will
be using in debug are given below. (Search the Internet for a DOS debug manual if you want the full details on
each command.) In the table below, an address is a single segment:offset value. (You cannot use a 20-bit
address in debug.) A range is a start address followed by an optional ending offset or by the letter L (for length)
and a number of bytes. Use spaces to separate arguments. A list is a list of one or more bytes (in hex). Any item
in [square] brackets is optional:

?
Help - list commands

D [range]
Dump (display on screen) memory contents. A
missing end offset means dump 128 bytes (often
displayed as eight rows of 16 bytes per row).

E address [list]
Enter (overwrite) memory with the list of bytes
(in hex), starting at this address. A missing list
will result in a prompt for a byte to enter.

U [range]
Un-assemble (diassemble) memory to 8086
assembly language. A missing end offset means
disassemble approximately 32 bytes.

A [address]
Assemble 8086 assembly language and load the
assembled machine language starting at address

N pathname
Remember this file name for use by L or W

L
Load from the file previously named by N

W [address]
Write memory into file named by N starting at
address; length to write is in the BX and CX
registers (high and low bytes).

Q
Quit debug

All numbers in debug are in hexadecimal. Remember to always turn 20-bit addresses into their segment:offset
form for use in debug addresses. You cannot use 20-bit addresses directly in debug; convert them first.

Example: Dump (display) 20 bytes at address B8123 D B800:0123 L 20
Example: Disassemble bytes from B8123 to B812F U B000:8123 812F
Example: Overwrite memory starting at B8123 E B812:0003 1A FF 3B C7 33 CB 25

CST8214 Lab 9 – March 30, 2008 Page 2 of 8

Lab 9 CST8214 Ian! D. Allen – Winter 2008

Dumping (Displaying) Memory

To dump (display) 128 bytes of memory to the screen in hexadecimal and ASCII, starting from the 20-bit
memory location C0000, start debug and type the dump command given below (remembering to convert the
20-bit address C0000 to segment:offset form first). Sample output is shown; your actual output may differ:

C:\>debug
­D C000:0000 (remember to push Return or Enter at the end of each debug command)
C000:0000 55 AA 40 E9 54 01 BD 6F­A6 00 00 00 00 00 00 00 U.@.T..o........
C000:0010 64 03 27 01 00 00 00 00­00 01 18 01 00 00 49 42 d.'...........IB
C000:0020 4D 20 43 4F 4D 50 41 54­49 42 4C 45 0A 50 68 6F M COMPATIBLE.Pho
C000:0030 65 6E 69 78 56 69 65 77­28 74 6D 29 20 56 47 41 enixView(tm) VGA
C000:0040 2D 43 6F 6D 70 61 74 69­62 6C 65 20 42 49 4F 53 ­Compatible BIOS
C000:0050 20 56 65 72 73 69 6F 6E­20 00 0D 0A 43 6F 70 79 Version ...Copy
C000:0060 72 69 67 68 74 20 28 43­29 20 31 39 38 34 2D 31 right (C) 1984­1
C000:0070 39 39 32 20 50 68 6F 65­6E 69 78 20 54 65 63 68 992 Phoenix Tech

● On the far left are the hexadecimal memory addresses (in segment:offset form) of the bytes that start
each row of output. Each starting memory address is 16 bytes larger than its predecessor, since each row
contains 16 bytes. The first row starts at offset 0000 and ends at offset 000F for a count of 16 bytes.

● To the right of each address are the 16 bytes of the memory that are found starting at that address. Each
row contains 16 eight-bit bytes, each byte shown as two hexadecimal digits. A dash separates the
middle two bytes of each row for readability (between byte 7 and byte 8 of bytes 0 through 15).

● To the right of the 16 hexadecimal bytes is a row of 16 ASCII characters, which are the ASCII
characters that correspond to the 16 bytes shown in the hexadecimal byte dump for that row. If a byte
cannot be turned into a valid printable ASCII character (e.g. it might be an unprintable control character
or it might be a non-ASCII character), a period (dot) is used in the ASCII dump output instead.

If you now enter a single 'D' in debug (followed by Return), debug will show the next 128 bytes of memory.

Look at this row of dump output below (this single row is taken from the above printed sample dump):

 C000:0020 4D 20 43 4F 4D 50 41 54­49 42 4C 45 0A 50 68 6F M COMPATIBLE.Pho

The starting address of the first byte in the above row is C000:0020 or C0020. The last byte in the row has
address C000:002F or C002F. The ASCII letter 'C' is located two bytes from the beginning of the row, at
address C000:0022 or C0022. We can see in the above row dump that ASCII 'C' has hexadecimal value 43.
The value of the byte at address C000:002C (or C002C) is 0A, which is not a printable ASCII character and
shows up as a period '.' in the ASCII dump section. The 0A is an ASCII “LF” [linefeed or newline] character,
written as '\n' in C language. Another common unprintable character found in DOS/Windows text files is the
“CR” [carriage return] character with hex value 0D. The CR byte is followed by an LF byte in DOS/Windows
text files and the pair of bytes 0D 0A is often written in documentation as CR+LF, CR/LF, or CRLF.

Examine the full 128-byte sample dump printed above (not the one on your screen!) and answer these questions:

4. Give the starting memory location (20-bit address) of the sequence CR+LF: ____________________

5. What printable ASCII character is at memory location C000:007A: _____________________

6. What is the hexadecimal value of the byte at location C003:004B: ______________________

CST8214 Lab 9 – March 30, 2008 Page 3 of 8

Lab 9 CST8214 Ian! D. Allen – Winter 2008

Entering (Changing) Memory

You can enter (change) the values in memory using the debug Enter command; but, be careful not to change
things that might have serious consequences for your computer or data. (It is highly unlikely but possible to
trigger an accidental reformat of your hard drive by changing some particular values in memory!)

Let's start by entering a list of bytes into memory and then dumping what we changed. Starting at 88000, keep
dumping memory (using the Dump command) until you find a memory area that contains only zero bytes.
Remember the start address of this block of zeroes. Suppose your zero block starts address was 89000. We
will dump a length of 9 bytes starting at that address, then use the Enter command to change some values
starting at that address, then dump that address again. Here are the bytes you should enter:

­D 8900:0000 L 9
8900:0000 00 00 00 00 00 00 00 00­00
­E 8900:0000 4C 69 6E 75 78 20 52 4F 58
­D 8900:0000 L 9
8900:0000 4c 69 6E 75 78 20 52 4F­58 ?????????

Note the list of 9 changed bytes that we entered into memory using the Enter command.

7. Give the ASCII text corresponding to the bytes entered: ____________________________________

Changing Video Memory using DEBUG

The DOS (not debug) cls command (“clear screen”) will clear your DOS command window. For the next part
of the lab, you may have to periodically exit debug and issue the cls command through DOS to clear the
screen, then re-enter debug. Do this now - exit debug, clear your screen, then re-enter debug.

A) Clear the screen before you start this section. Use debug to dump the memory starting at address
B8000. Verify that the memory does not contain any FF bytes. If it does, dump starting at address
B0000 instead. Use whichever address shows you a series of ’20 07’ bytes repeated. Call over your
instructor if you do not see this. We will assume that B8000 is the correct address in this section.

B) Use debug to enter the bytes 41 12 42 75 43 34 44 25 45 57 starting at address B80A0.
Five characters near the top of your DOS window should change to be the coloured upper-case ASCII
letters ABCDE on various colour backgrounds. Call over your instructor if you do not see this.

Your DOS screen represents every character using two bytes. The first byte is the ASCII character value (e.g.
41='A') and the second byte is an attribute byte that determines how that character should be displayed (e.g.
12). The upper nybble (half-byte) of the attribute byte controls the Background colour of the character; the
lower nybble controls the Foreground colour (the letter itself) using this mapping:

 BACKGROUND FOREGROUND
Bit number: 3 2 1 0 3 2 1 0
Attribute: F R G B H R G B

 Above is a bit-map of the eight bits of the attribute byte.

H: this bit means to use high intensity
R: this bit means turn on red
G: this bit means turn on green
B: this bit means turn on blue
F: this bit means to flash the foreground on/off

For example, to have a blue background with a green foreground letter, use attribute byte value 12h which has
bit pattern 0001 0010. For a green background and red letter, set the attribute byte to 24h (0010 0100).

8. (S-1) Display a high-intensity white A on a black background followed by a black B on a white
background followed by a green C on a red background. Call your instructor for a sign-off: __________

CST8214 Lab 9 – March 30, 2008 Page 4 of 8

Lab 9 CST8214 Ian! D. Allen – Winter 2008

CGA Character Tables in ROM

To display the letter shapes of characters on the DOS screen, the BIOS routines must know what pixels to turn
on and off. The pixels are controlled by bit patterns. These bit patterns are read from a table in upper DOS read-
only memory (ROM). Since a DOS character occupies seven bits, with 27 possible values, there are 128 possible
characters, and the BIOS character table in ROM has 128 bit patterns in it.

The bit pattern for each BIOS character is drawn using an eight-bit by eight-bit square, with each bit in the
square representing a pixel on the screen. Each character uses 64 bits; see the 8x8 grids below. The square of
8x8 pixels is stored in memory as eight eight-bit bytes, with the eight bits in each byte being a row in the square.
The first eight-bit byte is the top row of eight pixels of the character. Eight rows of eight-bit-bytes makes up the
64 bits of the character. The full BIOS character table is made up of 128 characters, which is 128 sets of eight
bytes (64 pixels). The BIOS ROM character table starts at address FFA6E. Dump this address.

The first eight bytes of the dump should be zero, followed by some non-zero bytes. The first character in the
ROM character table (BIOS character #0) is null (no bits on), which is eight bytes of 00h. The next eight bytes
are for BIOS character #1. The eight bytes for the ASCII character ‘A’ (BIOS/ASCII character #41h) start 41h
table places after the start address, at FFC76. Dump this address. During an exam you could be asked to
calculate the address of any letter in ROM, given its ASCII value and the start address of the table or the address
of any other letter. Find a systematic way to calculate the 20-bit ROM memory address of any letter.

9. Write to the left of the leftmost 8x8 grid below the eight hex bytes that represent the bit pattern for the
character ‘A’, one byte per row, starting at the top row and working down to the bottom row. Shade or
'X' the eight-bit patterns for each of the eight bytes in the grid to see how the letter ‘A’ uses pixels.

10. Repeat the exercise for the letter 'K', also giving its 20-bit ROM character table memory address:

Character: A Address: FFC76 Character: K Address: _____________________

11. What is the size in bytes of the BIOS character ROM table in decimal and hex? __________________

12. What is the 20-bit address of the last byte in the BIOS character ROM table? ____________________

13. What character shape is stored right after the null at the start of the table? ______________________

CST8214 Lab 9 – March 30, 2008 Page 5 of 8

Lab 9 CST8214 Ian! D. Allen – Winter 2008

Using DEBUG with Programs: Unassemble (Disassemble)

Debug will also allow us to view information about programs in memory. Programs start at offset 0100h inside
a segment because the first 100h (256) bytes of memory are used as header information for the operating system
to understand where the program will execute and what interrupts to call. Use debug to load into memory and
dis-assemble (from machine code to assembly language) the start of the command.com program:

C:\>cd \windows
C:\windows>debug command.com
­U
0F96:0100 06 PUSH ES
0F96:0101 17 POP SS
0F96:0102 BE1B02 MOV SI,021B
0F96:0105 BF1B01 MOV DI,011B
0F96:0108 8BCE MOV CX,SI
0F96:010A F7D9 NEG CX
0F96:010C FC CLD
[... etc. ...]

You may not see the exact same code as displayed – it depends on what version of command.com is loaded into
memory on your system.

The output above is the assembly language equivalent (an assembly listing) of the machine code at the start of
the loaded command.com program. Memory addresses of the start of each instruction are on the far left in
segment:offset form, followed by the machine-code byte contents of memory at those addresses, followed by
the assembler mnemonics for the machine instructions. The bytes displayed to the left of the mnemonics are the
bytes for the machine code of that instruction, e.g. the three bytes BE1B02 starting at memory location
0F96:0102 are the machine code for the Intel instruction MOV SI,021B

Intel processors have variable-length instructions. Not all instructions use the same number of bytes. In the
code above, note how the PUSH, POP, and CLD instructions take only a single byte each. The first two MOV
instructions begin with bytes BE and BF and each instruction is three bytes long. Two of the three bytes are 16-
bit addresses, which you can see stored in the memory dump, e.g. address 021B is stored in memory as 1B02.
These 16-bit addresses appear to be stored backwards in memory!

14. Why is the two-byte address 021B stored in memory as 1B followed by 02? ___________________

15. What is the hexadecimal value in memory (above) at location 0F96:0103? ___________________

16. What is the hexadecimal value in memory (above) at location 0FA67? ________________________

Using DEBUG with Programs: Assemble

In this section below are the steps to follow to write a small Intel assembly language program, assemble it, save
it to disk, load it from disk and finally run it. This program uses built-in BIOS “interrupt” system routines to do
most of the input/output work. We simply set some register values and then call the BIOS routine to do the I/O
for us. There are many system interrupt routines used by DOS to carry out its activities; see any DOS manual
(or search the Internet) for details.

CST8214 Lab 9 – March 30, 2008 Page 6 of 8

Lab 9 CST8214 Ian! D. Allen – Winter 2008

A) Start debug and enter the Intel assembly language program given in the table below using the debug
Assemble command (see below). The comment column is there to explain what the code does – you
don’t type it in. Your code segment value may not be the same as the example below; i.e., you may not
see the same segment 0B55, but you will see the same offsets, starting at 0100. After you enter each
line debug will assemble it to machine code (object code) in memory. Note how the address offset
increments as each instruction is stored in memory. Note that not all instructions are the same length.

­A this column below is for comments – do not type these in

0B55:0100 MOV AH,00 set up for BIOS function 00H (“set video mode”) for use by INT 10H

0B55:0102 MOV AL,03 set up for 80 x 25 text

0B55:0104 INT 10 call INT 10H which uses the BIOS routine to do the work

0B55:0106 MOV AH,09 set up function 09H (which means “display character and attribute”)

0B55:0108 MOV BH,00 set up to display page 0

0B55:010A MOV AL,41 specify the character ASCII code to display (41H for ‘A’)

0B55:010C MOV CX,50 specify to repeat the character 50H (80 base ten) times

0B55:010F MOV BL,14 specify the character attribute byte: red character on blue background

0B55:0111 INT 10 call INT 10H which uses the BIOS routine to do the work

0B55:0113 INT 3 call a debug break to stop the program

0B55:0114 enter a blank line to end the assembly

­U 100 disassemble your program starting at offset 100 and check your typing

B) Make sure your disassembly listing matches the above code. Note that this program used 14h bytes of
memory. We will save these 14h bytes to a file by naming the file letters.com and telling debug how
many bytes to write, then using the Write command. The Register command prompts you for input:

­N letters.com
­R BX
BX 0000
:0
­R CX
CX 0000
:14 <­­ this is the number of bytes to write to the file that you named with N
­W
Writing 14 bytes

C) Make sure you have written 14 bytes to the file letters.com. Now, we will re-load memory from the
file, check that the program is correct using a disassembly, and then execute your program:

­N letters.com
­L <­­ this loads into memory the file that you named with N
­U 100 <­­ disassemble your program and check your typing before you run it
­G
The running program will put a coloured string of ‘A’s across the top of the screen.

CST8214 Lab 9 – March 30, 2008 Page 7 of 8

Lab 9 CST8214 Ian! D. Allen – Winter 2008

D) Use the Enter command to modify the above program in memory. (Do not retype the whole program!)
Unassemble the program and locate the character attribute byte in memory. (Read the program
comments to locate this byte.) Use the Enter command to change just that one byte to be “blue on red”.
Locate the ASCII letter 'A' in the memory dump and change it to be 'B'. After you have made these two
changes, reset the instruction pointer register (the Intel name for PC or “program counter”) back to the
beginning of the program at 0100h and re-run the program:

­R IP
IP 0113
:100
­G

17. (S-2) Demonstrate to your instructor that your program writes 80 blue 'B's on red: ________________

E) Name and save the modified program under the name letters2.com. (This modified program will also
be 14h bytes long.)

F) Run a file compare command to demonstrate that the only differences between letters.com and
letters2.com are the two bytes you changed with the Enter command:

C:\>fc letters.com letters2.com
Comparing files letters.com and letters2.com
[... the bytes that are different output here ...]

18. (S-3) Demonstrate to your instructor that the two files differ by only two bytes: ____________________

Fun With DOS and Assembly Language (optional)

Use debug to modify two bytes in your letters.com program so that it can output 20 (or 255) happy face
characters instead of letters.

Writing to Intel I/O Ports (optional)

The Intel processors have special instructions to do Input/Output (I/O). I/O port 61h is the speaker port on most
Intel PCs. It is a special I/O port address allocated to the speaker. If you send a byte out through this port you
will activate or deactivate the speaker. You can use the debug Output command to do this:

­O 61 7 will sound the speaker

­O 61 0 will stop the sound

A Bye Bye Program (optional)

Type the following, which sets some memory and register values, and then executes the code found at FFFF0:

C:\>debug
­E 0040:0072 34 12
­R CS
:FFFF
­R IP
:0
­G

CST8214 Lab 9 – March 30, 2008 Page 8 of 8

