05/390

MVS JCL User’s Guide

<|lI!

05/390

MVS JCL User’s Guide

<|lI!

Note
Before using this information and the product it supports, be sure to read the general information under EAppendix E]

mm—m—meﬂ. “ — .

Ninth Edition, September 2000
This is a major revision of GC28-1758-07.

This edition applies to Version 2 Release 10 of OS/390 (5647-A01) and to all subsequent releases and modifications
until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY 12601-5400

United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):
Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs @us.ibm.com

World Wide Web: hitp://www ibm.com/s390/0s390/webqs html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
 Title and order number of this book
» Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/s390/os390/webqs.html

Contents

Figures.
Tables. oL Lo i
About This Book. . . D 4
Who Should Use This Book .
Where to Find More Information.XV

Programs L. L LY

Hardwarey
Summary of Changes . Xi

Part 1. Introduction

Chapter 1. Introduction - Job Control Statements. . Y
JCL Statements o o o o000 014
JECL Statements. 1-2

Chapter 2. Introduction - Job Control Language (JCL) e e 2
UnderstandingJCL e e e s o2
“Chez MVS”. . . . e e e e e 21
How This Relates to JCL e e e e e s e 21
Job Control Statements .22
Required Control Statements23
Exercise: Creating and EnteringadJob23
Before You Begin. . . e e e o .28
Step 1. Allocate a Data Set to Contarn Your JCL e e e .24
Step 2. Edit the JCL Data Set and Add the Necessary JCL24
Step 3. Submit the JCL to the Systemasadob26
Step 4. View and Understand the Output fromthedJob27
Step 5. Make Changes to Your JCL e e28
Step 6. View and Understand Your Final Output e e e o299
More Complex Jobs . . . e e e e e a2
In-Stream and Cataloged Procedures - N
Input Streams o ... L ... L L0212
Additional Information. . . . e~ ¢
Installation Conventions Worksheet A~ ¢
Using ISPF to Allocate and Edita DataSet.2-13
Using SDSF to View Held Output fromadJob 2-15
Helpful Utilites .217
Chapter 3. Job Control Tasks31
EnteringJobs o o oo B1
ProcessingJobs82
Requesting Resources. .32
Task Charts.82

Part 2. Tasks for Entering Jobs

Chapter 4. Entering Jobs - Identification41
Identificationof Job o o . . o L L 0oL o 41
Identificationof Step42

© Copyright IBM Corp. 1988, 2000 iii

Identification of Procedure . . .
Identification of INCLUDE Group .
Identification of Account

For Local Execution.

For Remote Execution .
Identification of Programmer.

Chapter 5. Entering Jobs - Execution
Execution of Program .
Execution of Procedure

Execution when Restarting and W|th Checkpomtmg (non APPC)

Restarting after Abnormal Termination .

Restarting When the System Failed in a JES2 System

Restarting When the System Failed in a JES3 System .
Deadline or Periodic Execution in a JES3 System.

Use of Deadline Scheduling .

Use of Periodic Scheduling .
Execution when Dependent on Other Jobs in a JESS System
Execution at Remote Node (non-APPC)

Considerations when Submitting a Remote Job.

Chapter 6. Entering Jobs - Job Input Control . . .
Job Input Control by Holding Job Entrance (Non-APPC)

Job Input Control by Holding Local Input Reader (Non-APPC) .

Job Input Control by Copying Input Stream (Non-APPC)
Job Input Control from Remote Work Station .
JES2 Remote Job Entry .
JES3 Remote Job Processing .

Chapter 7. Entering Jobs - Communication .
Communication from JCL to System (Non-APPC) .
Communication from JCL to Operator (Non-APPC)
Communication from JCL to Programmer .
Communication from JCL to Program

PARM Values for IBM-Supplied Programs.
Communication from System to Operator .

Messages during Volume Mounting .

Messages When Job Exceeds Output L|m|t
Communication from System to Userid .

Job Completion

Print Completion . .
Communication from Time Sharlng Userld to a JESS System
Communication from Functional Subsystem to Programmer .
Communication through Job Log . .

Printing Job Log and Sysout Data Sets Together .

Chapter 8. Entering Jobs - Protection
Protection through RACF . .

Chapter 9. Entering Jobs - Resource Control
Resource Control of Program Library
System Library.
Private Library .
Temporary Library .
Resource Control of Procedure lerary
Retrieving a Procedure Library .

iV 0S/390 V2R10.0 MVS JCL User's Guide

. 4-3
. 4-3

. 4-4
. 4-4

. 5-1
. 5-1
. 5-1
. 52
. 5-2
. 5-3

. 5-3
. 54

. b4
. 5-6

. 6-1

. 6-2
. 6-2
. 6-3
. 6-3
. 6-4

.71
.72

.72
. 7-3

. 7-3
. 7-3

. 7-5
. 7-5
. 7-6
. 7-6
. 7-6
.77

. 8-1
. 8-1

. 9-1
. 9-1

. 9-2
. 94

. 9-5

Updating a Procedure Library 95
Resource Control of INCLUDE Group . . 9-6
Retrieving an INCLUDE Group. . 9-6
Resource Control of Address Space . . 9-6
Types of Storage . . . 9-6
Requesting Amount and Type of Storage . . 97
Resource Control of the Processor . . 9-8
Selecting a Processor Using A Schedulrng Envrronment . 9-8
Selecting a Processor in JES2 . . .99
Selecting a Processor in JES3 . . 9-10
Resource Control of Spool Partitions in a JESS System . . 9-10
Part 3. Tasks for Processing Jobs
Chapter 10. Processing Jobs - Processing Control. . 10-1
Processing Control by Conditional Execution . . 10-1

Bypassing or Executing Steps Based on the Evaluatlon of Prevrous Steps 10-1

Bypassing or Executing Steps Based on Return Codes 10-5
Processing Control by Cancelling a Job that Exceeds Output Limit . 10-12
Limiting Output in an APPC Scheduling Environment. . 1012
Limiting Output in a Non-APPC Schedulrng Environment . . 1012
Use in Testing . . Coe e . 10-13
Processing Control by T|m|ng Executron . 10-13
JOB and EXEC TIME Parameter . . 10-13
JES2 Time Parameters. 10-15
0OS/390 UNIX System Services Consrderatlons . 10-15
Processing Control for Testing 10-15
Altering Usual Processing for Testing . 10-15
Chapter 11. Processing Jobs - Performance Control . . 1141
Performance Control by Job Class Assignment (Non-APPC) . 111
Performance Control by Selection Prrorrty (Non-APPC) . 11-2
Priority for JES2 Jobs. .o e . 11-2
Priority for JES3 Jobs. . 11-3
Priority Aging . . 11-3
Performance Control by Performance Group (Non APPC) . . 11-3
Performance Control by 1/0-to-Processing Ratio (Non-APPC) . . 114
Part 4. Tasks for Requesting Data Set Resources
Chapter 12. Data Set Resources - Identification . . 12-1
Identification of Data Set . 12-1
Permanent Data Set . . 1241
Temporary Data Sets . . . 12-3
Copying the Data Set Name from an Earlrer DD Statement . . 124
Concatenating Data Sets . 12-5
Identification of In-Stream Data Set (Non APPC) . 12-5
Entering Data Through the Input Stream. . 12-5
In-Stream Data Sets in a JES3 System . . 12-6
Identification of Data Set on 3540 Diskette Input/Output Umt . 12-6
Identification through Catalog . e e . 12-7
Using Private Catalogs . . 12-7
Identification through Label. . 12-8
Identification by Location on Tape . . 12-9
Identification as TCAM Message Data Set . 12 10

Contents V

Vi

Identification as Data Set from or to Terminal (Non-APPC).

Chapter 13. Data Set Resources - Description
Description of Status .
Data Set Integrity Processmg
Description of Data Attributes . .
In Data Control Block (DCB) .
Migration and Backup (with SMS) .

Chapter 14. Data Set Resources - Protection .
Protection through RACF
Protection with the PROTECT Parameter
Protection with the SECMODEL Parameter.
Protection for ISO/ANSI/FIPS Version 3 Tapes
Protection by Passwords
Protection of Access to BSAM or BDAM Data Sets

Chapter 15. Data Set Resources - Allocation .
Allocation of Device
Device Allocation for SMS Managed Data Sets
Device Allocation for Non-SMS-Managed Data Sets
Device Allocation in a JES3 System . .
Allocation of Volume.
Volume Allocation for SMS Managed Data Sets
Volume Allocation for Non-SMS-Managed Data Sets .
Volume Allocation for Non-System-Managed Data Sets and Data Sets on
a System-Managed Tape Volume . .
Interactions Between Device and Volume AIIocatron .
Relationship of the UNIT and VOLUME Parameters (Non- SMS Managed
Data Sets) . . .
Relationship of the UNIT and VOLUME Parameters (SMS Managed Data
Sets)
Unit and Volume Afflnrty for Non System Managed Data Sets and Data
Sets on a System-Managed Tape Volume . G
Stacking Data Sets .
Examples of Data Set Stacklng
Data Set Stacking and Tape Mount Management
Allocation of Direct Access Space.
Requesting System Assigned Space.
Requesting Specific Tracks .
Allocation of Virtual 1/0.
Backward References to VIO Data Sets
Allocation with Volume Premounting in a JES2 System
Dynamic Allocation .

Chapter 16. Data Set Resources - Processing Control
Processing Control by Suppressing Processing .
Processing Control by Postponing Specification .
Processing Control with Checkpointing
Processing Control by Subsystem .

Requesting Subsystem .

Program Control Statements for a Subsystem
Processing Control by TCAM Job or Task .

Chapter 17. Data Set Resources - End Processing .
Unallocation End Processing .

0S/390 V2R10.0 MVS JCL User’s Guide

. 12-10

. 13-1
. 13-1
. 132
. 13-4
13-4
137

. 14-1
. 14-1
. 14-1
. 142
. 14-2
. 142
. 14-3

. 15-1

. 15-2

. 15-2

. . 15-8
. 15-11
. 15-16
. 15-16
. 15-17

. 15-17
. 15-23

. 15-23
. 15-27

. 15-28
. 15-36
. 15-37
. 15-40
. 15-42
. 15-42
. 15-46
. 15-46
. 15-48
. 15-49
. 15-50

. 16-1
. 16-1
. 16-2
. 16-4
. 16-4
. 16-4
. 16-4
. 16-5

. 1741
171

Disposition End Processing of Data Set . . 171
Disposition Controlled by DISP Parameter . . 171
Disposition Controlled by Time . . 17-10

Release of Unused Direct Access Space in End Processmg . 17-11

Disposition End Processing of Volume . L 17-11
Disposition of Removable Volumes L 17-11
Volume Retention. 1712

Part 5. Tasks for Requesting Sysout Data Set Resources

Chapter 18. Sysout Resources - Identification . 18-1

Identification as a Sysout Data Set. . 18-1

Identification of Output Class . . 18-1

Identification of Data Set on 3540 Dlskette Input/Output Un|t . 18-2

Chapter 19. Sysout Resources - Description . . 19-1

Description of Data Attributes . . 19-1

Chapter 20. Sysout Resources - Protection. . 20-1

Protection of Printed Output . 20-1

Chapter 21. Sysout Resources - Performance Control -

Performance Control by Queue Selection (non-APPC). -

Chapter 22. Sysout Resources - Processing Control . . 22-1

Processing Control with Additional Parameters 22-1
Adding Parameters from OUTPUT JCL Statement . . 22-2
Adding Parameters from JES2 /*OUTPUT Statement . . 22-4
Adding Parameters from JES3 //*FORMAT Statement . . 22-4

Processing Control by Segmenting . . . 224

Processing Control with Other Data Sets . 22-4
Using Output Class . 22-4
Using Sysout Data Set Size in a JESS System . 22-5
Using Groups in a JES2 System. .o . 22-5

Processing Control by External Writer. . 22-6

Processing Control by Mode . . 22-6

Processing Control by Holding . 227
Holding Using the DD Statement . . 22-7
Holding Using the OUTPUT JCL Statement . 22-7

Processing Control by Suppressing Output . . 22-8
Using Dummy Status to Suppress Output . . . 22-8
Using Class to Suppress Output in a JES2 System. . 22-9
Using the OUTPUT JCL Statement to Suppress Output ina JE82 System 22-9

Processing Control with Checkpointing . G . 22-9

Processing Control by Print Services Facility. 22 10
Identifying a LibrarytoPSF2210

Chapter 23. Sysout Resources - End Processing . 23-1

Unallocation End Processing . . 23-1

Chapter 24. Sysout Resources - Destination Control . . . 24-1

Destination Control to Local or Remote Device or to Another Node . . 24-1
Multiple Destinations . . . 24-1
Controlling Output Destlnat|on ina JESZ Network . . 24-2
Controlling Output Destination in a JES3 Network . . 24-4

Destination Control to Another Processor in a JES3 System . 24-5

Contents Vi

Destination Control to Internal Reader24-5

Destination Control to Terminal . . . e e e 247
Destination Control to Assist in Sysout D|str|but|on e e e e 24T
Chapter 25. Sysout Resources - Output Formatting 25-1
Output Formatting to Any Printer. . . . e e e oo o251
Output Formatting to 3800 Printing Subsystem e e e2b2
Copy Moadification .253
Character Arrangements. 25-3
Output Formatting to 3211 Printer W|th Indexmg Feature ina JES2 System 25-4
Output Formatting to Punch254
Interpretation of Punched Cards.255
Output Formatting of Dumps on 3800 Printing Subsystem25%5
Chapter 26. Sysout Resources - Output Limiting 26-1
Output Limiting . . . e e e e L2641
Limiting Output in an APPC Schedullng Enwronment e e oL 261
Limiting Output in a Non-APPC Scheduling Environment. 26-2
Actions when Limit Exceeded.262
Chapter 27. Sysout Resources - USERDATA OUTPUT JCL Keyword 27-1
References 271
Examples L0027

Part 6. Examples

Chapter 28. Example - Assemble, Linkedit,and Go. 28-1
Chapter 29. Example - Multiple OQutput 291
Chapter 30. Example - Obtaining Output in a JES2 System 30-1
Chapter 31. Example - Obtaining Output in a JES3 System 31-1
Chapter 32. Example - Identifying Data Sets to the System 32-1

Part 7. Appendixes

Appendix A. Indexed Sequential DataSets A-1
Creating an Indexed Sequential Data Set. A1
Procedure when Allocation Error Occurs A4
Area Arrangement of an Indexed Sequential Data Set T v
Retrieving an Indexed SequentialDataSet A5
Appendix B. Generation DataSets B-1
Building a GDG Base Entry.B=2
Defining Attributes for SMS-Managed Generatlon Data SetsB2
Creating an SMS-Managed GenerationDataSet B-3
Disposition of SMS-Managed Generation Data SetsBs3
Defining Attributes for Non-SMS-Managed Generation Data SetsB4
Creating a Non-SMS-Managed Generation Data Set. B-5
Retrieving a Generation Data Set.B6
Deleting and Uncataloging Generation Data Sets eB9
Submitting a Job forRestartB-10

Vviil 0S/390 V2R10.0 MVS JCL User's Guide

Appendix C. VSAM Data Sets

VSAM Data Sets - With SMS
Creating a VSAM Data Set - With SMS .o
Retrieving an Existing VSAM Data Set - With SMS
Migration Consideration for SMS
DD Statement Parameters - With SMS.

VSAM Data Sets - Without SMS . . .
Creating a VSAM Data Set - Without SMS .

Retrieving an Existing VSAM Data Set - Without SMS .

DD Statement Parameters - Without SMS

Appendix D. Data Sets with SMS .
SMS Constructs . .o
Existing JCL
Default Unit.
Specifying Constructs . .
Overriding Attributes Defined in the Data Class
Overriding Attributes Defined in the Management Class
Overriding Attributes Defined in the Storage Class
Protecting Data Sets with RACF . G
Modeling Data Set Attributes

Appendix E. Notices .
Trademarks.

Index .

Contents

ix

X 0S/390 V2R10.0 MVS JCL User’s Guide

Figures

2-1. JCL-Related Actions (Userand MVS).22
2-2. Output from Job Invoking IEFBR14 Program28
2-3. Output from Job Invoking SORT Program.210

© Copyright IBM Corp. 1988, 2000 Xi

Xii 0S/390 V2R10.0 MVS JCL User’s Guide

Tables

MVS Job Control Language (JCL) Statements

Job Entry Control Language (JECL) Statements .

In-Stream Procedure . . .

Cataloged Procedure: Member MYPROC in SYS1 PROCLIB

Job that Executes Cataloged Procedure MYPROC

Job Boundaries in a Three-Job Input Stream

Tasks and Utility Programs .

Tasks for Entering Jobs .

Tasks for Processing Jobs . .

Tasks for Requesting Data Set Resouroes . .

Tasks for Requesting Sysout Data Set Resources .

Identification Task for Entering Jobs

Execution Task for Entering Jobs

Input Control Task for Entering Jobs .

Communication Task for Entering Jobs .

Protection Task for Entering Jobs

Resource Control Task for Entering Jobs

Processing Control Task for Processing Jobs

Performance Control Task for Processing Jobs .

Identification Task for Requesting Data Set Resources .

Description Task for Requesting Data Set Resources

Data Set Integrity Processing

Protection Task for Requesting Data Set Resources

Processing with DD LABEL Subparameter IN or OUT

Allocation Task for Requesting Data Set Resources .

Effect of Device Status on Allocation.

JES3 Job Setup (SETUP=JOB) . . .

JES3 High Watermark Setup (SETUP= HWS)

JES3 Explicit Setup (SETUP=ddname) .

Unit-Affinity Examples of Tape Library Requests .

Unit and Volume Affinity (Non-SMS-Managed Data Sets).
IBM-Recommended Parameters for Data Set Stacking

Processing Control Task for Requesting Data Set Resources.

End Processing Task for Requesting Data Set Resources .

Identification Task for Requesting Sysout Data Set Resources .
Description Task for Requesting Sysout Data Set Resources.

Protection Task for Requesting Sysout Data Set Resources . .
Performance Control Task for Requesting Sysout Data Set Resources .
Processing Control Task for Requesting Sysout Data Set Resources .
End Processing Task for Requesting Sysout Data Set Resources .
Destination Control Task for Requesting Sysout Data Set Resources .
Output Formatting Task for Requesting Sysout Data Set Resources .
Output Limiting Task for Requesting Sysout Data Set Resources .
Area Arrangement of ISAM Data Sets

DD Parameters for Retrieving or Extending an ISAM Data Set

With SMS, DD Parameters to Use when Processing VSAM Data Sets .
With SMS, DD Parameters to Avoid when Processing VSAM Data Sets .
Without SMS, DD Parameters to Use when Processing VSAM Data Sets

Without SMS, DD Parameters to Avoid when Processing VSAM Data Sets .

© Copyright IBM Corp. 1988, 2000

—_
1
NN —

. 2-11
. 2-12
. 2-12
. 2-12
. 2-17

. 3-3

. 3-6
. 3-8
. 4-1
. 5-1
. 6-1
.71

. 9-1

. 10-1
1141
. 1241
. 13-1
. 13-3
. 14-1
. 14-3
. 15-1
. . 15-3
. 15-13
. 15-14
. 15-15
. 15-30
. 15-32
. 15-37
. 16-1
L1741
. 18-1
. 19-1
. 20-1
. 211
. 22-1
. 23-1
. 24-1
. 25-1
. 26-1

. A-5
. A7
. C-2
. C3

. C-6

xiii

Xiv 0S/390 V2R10.0 MVS JCL User’s Guide

About This Book

This book describes the job control tasks needed to enter jobs into the operating
system, control the system’s processing of jobs, and request the resources needed
to run jobs. To perform the tasks, programmers code job control statements. This
book describes how to use these statements, which consist of:

» Job control language (JCL) statements

» Job entry subsystem 2 (JES2) control statements

» Job entry subsystem 3 (JES3) control statements

This book is designed as a user’s guide, to be used when deciding how to perform

job control tasks. It does not describe how to code the statements. For an

introduction to the statements and for coding information, see the companion book,
, GC28-1757.

Who Should Use This Book

This book is for system and application programmers who enter programs into the
operating system. Those using this book should understand the concepts of job
management and data management.

Where to Find More Information

To have complete JCL information, you need the following book:
l0S/390 MVS UCI Referenca, GC28-1757

Where necessary, this book references information in other books, using shortened
versions of the book title. For complete titles and order numbers of the books for all
products that are part of 0S/390, see [QS/390 Information Roadmap, GC28-1727.
The following tables list titles and order numbers for books related to other
products.

Programs
Short Title Used in This Book Title Order Number
ACF/TCAM Installation Reference Advanced Communications Function for TCAM, Version |SC30-3133
2 Installation Reference
ISPF/PDF Guide and Reference ISPF/PDF Guide and Reference V3.4 for MVS SCB34-4258
PSF/MVS System Programming PSF/MVS System Programming Guide S544-3672
Guide
PSF/MVS Application Programming PSF/MVS Application Programming Guide S544-3673
Guide
Hardware
Short Title Used in This Book Title Order Number
2821 Component Description IBM 2821 Control Unit Component Description GA24-3312
None IBM 3340 Disk/Storage - Fixed Head Feature User’s GA26-1632
Guide
3540 Programmer’s Reference OS/VS2 IBM 3540 Programmer’s Reference GC24-5111
3800 Programmer’s Guide IBM 3800 Printing Subsystem Programmer’s Guide GC26-3846

© Copyright IBM Corp. 1988, 2000 XV

Short Title Used in This Book

Title

Order Number

Forms Design Reference Guide for
the 3800

Forms Design Reference Guide for the IBM 3800
Printing Subsystem

GA26-1633

XVi 0S/390 V2R10.0 MVS JCL User’s Guide

Summary of Changes

Summary of Changes
for GC28-1758-08
0S/390 Version 2 Release 10

The book contains information previously presented in GC28-1758-07, which
supports OS/390 Version 2 Release 9.

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for GC28-1758-07
0S/390 Version 2 Release 9

The book contains information previously presented in GC28-1758-06, which
supports OS/390 Version 2 Release 8.

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for GC28-1758-06
0S/390 Version 2 Release 8

The book contains information previously presented in GC28-1758-05, which
supports OS/390 Version 2 Release 7.

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for GC28-1758-05
0S/390 Version 2 Release 7

The book contains information previously presented in GC28-1758-04, which
supports OS/390 Version 2 Release 6.

New Information
* The CCSID parameter is added to the JOB, EXEC, and DD statements.

+ The topic "Data Sets That Span Libraries” is added to ‘Chapter 15 _Data Sef
Besaurces - Allocation” on page 15-1l to describe an enhancement to allocation

processing.

Changed Information
» The protection task of the ACCODE parameter of the DD statement is updated.

This book includes terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

© Copyright IBM Corp. 1988, 2000 XVii

Summary of Changes
for GC28-1758-04
0S/390 Version 2 Release 6

The book contains information previously presented in GC28-1758-03, which
supports OS/390 Version 2 Release 5.

Changed Information

» The SCHENV parameter on the JOB statement, which allows you to specify the
name of a WLM scheduling environment, can now be used for JES3 jobs.

» As part of the name change of OpenEdition to OS/390 UNIX System Services,
occurrences of OS/390 OpenEdition have been changed to 0OS/390 UNIX
System Services or its abbreviated name, OS/390 UNIX. OpenEdition may
continue to appear in messages, panel text, and other code with OS/390 UNIX
System Services.

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for GC28-1758-03
0S/390 Version 2 Release 5

The book contains information previously presented in GC28-1758-02, which
supports OS/390 Version 2 Release 4.

New Information

* New OUTPUT JCL parameters have been added to the Print Services Facility
(PSF).

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for GC28-1758-02
0S/390 Version 2 Release 4

The book contains information previously presented in GC28-1758-01, which
supports OS/390 Version 1 Release 2.

New Information

* There is a new parameter, SCHENYV, on the JOB statement. Currently valid only
for JES2 jobs, it allows you to specify the name of a WLM scheduling
environment.

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes

for GC28-1758-01
0S/390 Release 2

Xvili 0S/390 V2R10.0 MVS JCL User’s Guide

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for GC28-1758-00
0S/390 Release 1

This book contains information previously presented in MVS/ESA JCL User’s Guide,
GC28-1473, which supports MVS/ESA System Product Version 5.

This book includes terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes ~ XiX

XX 0S/390 V2R10.0 MVS JCL User’s Guide

Part 1. Introduction

For your program to execute on the computer and perform the work you designed it
to do, your program must be processed by your operating system. Your operating
system consists of a base control program (BCP) with a job entry subsystem (JES2
or JES3) and DFSMSdfp installed with it.

For the operating system to process a program, programmers must perform certain
job control tasks. These tasks are performed through the job control statements,
which are listed in the first chapter. The job control tasks are introduced in the
second chapter as well as introductory information about JCL. The charts in the
third chapter divide these tasks into detailed subtasks. The tasks are:

* Entering jobs

* Processing jobs

* Requesting resources

© Copyright IBM Corp. 1988, 2000

Part 1. Introduction

0S/390 V2R10.0 MVS JCL User’'s Guide

Chapter 1. Introduction - Job Control Statements

This chapter lists, in [lable 1-1] all but one of the statements in the MVS Job Control
Language (JCL), and in [able 1-2 on page 1-3, all of the Job Entry Control
Language (JECL) statements for the JES2 and JES3 subsystems, together with the
purpose of each statement. (The PRINTDEV JCL statement, for use by the person
starting the Print Services Facility, is documented in the manual BPSE for 0S/390]
m-)

JCL Statements

Table 1-1. MVS Job Control Language (JCL) Statements

Statement Name Purpose

// command JCL command Enters an MVS system operator
command through the input stream. The
command statement is used primarily by
the operator. Use the COMMAND
statement instead of the JCL command
statement.

/I COMMAND command Specifies an MVS or JES command that
the system issues when the JCL is
converted. Use the COMMAND statement
instead of the JCL command statement.

/I* comment comment Contains comments. The comment
statement is used primarily to document a
program and its resource requirements.

/Il CNTL control Marks the beginning of one or more
program control statements.

// DD data definition Identifies and describes a data set.

/[delimiter Indicates the end of data placed in the

input stream.

Note: A user can designate any two
characters to be the delimiter.

// ENDCNTL end control Marks the end of one or more program
control statements.

/I EXEC execute Marks the beginning of a job step;
assigns a name to the step; identifies the
program or the cataloged or in-stream
procedure to be executed in this step.

/I IF/THEN/ELSE/ENDIF | IF/THEN/ELSE/ENDIF | Specifies conditional execution of job
statement construct steps within a job.

/I INCLUDE include Identifies a member of a partitioned data
set (PDS) or partitioned data set
extended (PDSE) that contains JCL
statements to be included in the job
stream.

// JCLLIB JCL library Identifies the libraries that the system will

search for:

* INCLUDE groups

* Procedures named in EXEC
statements.

© Copyright IBM Corp. 1988, 2000 1-1

Introduction - Statements

Table 1-1. MVS Job Control Language (JCL) Statements (continued)

Statement

Name Purpose

// JOB

job Marks the beginning of a job; assigns a
name to the job.

I

null Marks the end of a job.

// OUTPUT

output JCL Specifies the processing options that the
job entry subsystem is to use for printing

a sysout data set.

// PEND

Marks the end of an in-stream or
cataloged procedure.

procedure end

/I PROC

procedure Marks the beginning of an in-stream
procedure and may mark the beginning of
a cataloged procedure; assigns default
values to parameters defined in the

procedure.

Il SET

set Defines and assigns initial values to
symbolic parameters used when
processing JCL statements. Changes or
nullifies the values assigned to symbolic
parameters.

/I XMIT

transmit Transmits input stream records from one
node to another.

Note: The XMIT JCL statement is
supported only on JES3 systems.

JECL Statements

Table 1-2. Job Entry Control Language (JECL) Statements

Statement

| Purpose

Job Entry Subsystem 2 (JES2) Control Statements

/*$command

Enters JES2 operator commands through the input stream.

/*JOBPARM

Specifies certain job-related parameters at input time.

/*MESSAGE

Sends messages to the operator via the operator console.

/*NETACCT

Specifies an account number for a network job.

/*"NOTIFY

Specifies the destination of notification messages.

/*OUTPUT

Specifies processing options for sysout data set(s).

/*PRIORITY

Assigns a job queue selection priority.

/*ROUTE

Specifies the output destination or the execution node for the job.

/*SETUP

Requests mounting of volumes needed for the job.

/*SIGNOFF

Ends a remote job stream processing session.

/*SIGNON

Begins a remote job stream processing session.

*XEQ

Specifies the execution node for a job.

[XMIT

Indicates a job or data stream to be transmitted to another JES2
node or eligible non-JES2 node.

Job Entry Subsystem 3

(JES3) Control Statements

/[**command

Enters JES3 operator commands, except *DUMP and *RETURN,
through the input stream.

1-2 0S/390 V2R10.0 MVS JCL User's Guide

Introduction - Statements

Table 1-2. Job Entry Control Language (JECL) Statements (continued)

Statement Purpose

/[*DATASET Begins an input data set in the input stream.

/["ENDDATASET Ends the input data set that began with a /*DATASET statement.

/["ENDPROCESS Ends a series of /*"PROCESS statements.

/I"FORMAT Specifies the processing options for a sysout or JES3-managed
print or punch data set.

/I*MAIN Defines selected processing parameters for a job.

/FNET Identifies relationships between predecessor and successor jobs
in a dependent job control net.

/["NETACCT Specifies an account number for a network job.

/[*OPERATOR Sends messages to the operator.

/I"PAUSE Halts the input reader.

/["PROCESS Identifies a nonstandard job.

/I"ROUTE Specifies the execution node for the job.

/*SIGNOFF Ends a remote job stream processing session.

/*SIGNON Begins a remote job stream processing session.

Chapter 1. Introduction - Job Control Statements ~ 1-3

Introduction - Statements

1-4 0S/390 V2R10.0 MVS JCL User’s Guide

Chapter 2. Introduction - Job Control Language (JCL)

This chapter is divided into the following sections:

Heading Description

tUnderstanding JCL1 Explains the purpose of JCL and how it is used.

LExercise: Creating and Provides an example of JCL code that you can use as a

= basis for your own jobs.

Explains how to create and use in-stream and cataloged
@ procedures and how to group more than one job into input
streams.

Contains a worksheet for documenting installation
M conventions; explains how to use ISPF to allocate and edit
a data set; explains how to use SDSF to view held output
from a job; and lists utilities that you can use with JCL to
accomplish various tasks.

Understanding JCL

To get your MVS system to do work for you, you must describe to the system the
work you want done and the resources you will need.

You use Job Control Language (JCL) to provide this information to MVS.

“Chez MVS”

One way of thinking about JCL is to compare it to a menu in a restaurant.

If you are a customer at a restaurant, you and the other customers don'’t just walk
into the kitchen and start cooking your own dinners—that would defeat the very
purpose of going to a restaurant. Instead, from a menu describing all the restaurant
has to offer, you select items to make up an order, specifying which entrees you
want, which salad dressing you prefer, and any other special requests you have.
You then ask the waiter to take your order to the kitchen.

In the kitchen, a team of chefs divides up the work and the appropriate ingredients

in order to prepare each dish as quickly and efficiently as possible. While the meals
are being prepared, you and your friends can ignore what’s going on in the kitchen,
engaging instead in dinner conversation, catching up on the latest news. When the

waiter brings your meal out, you concentrate on your enjoyment of the meal.

How This Relates to JCL

Now imagine yourself back at the office using your MVS system, and think of JCL
as the menu. In the same way that you and the other diners select items from the
menu and place orders for the waiter to take to the team of chefs, you and other
MVS users use JCL to define work requests (called jobs), and use a job entry
subsystem (JES) to submit those jobs to MVS.

Using the information that you and the other users provide with JCL statements,

MVS allocates the resources needed to complete all of your jobs—just as the
kitchen chefs divided up the work to prepare the orders of all the customers.

© Copyright IBM Corp. 1988, 2000 2-1

Introduction - Job Control Language (JCL)

And just as the chefs worked in the kitchen while you and the other diners devoted
your attention to what was going on at your tables, MVS completes the submitted
jobs in the background of the system, enabling you and the other users to
continue working on other activities in the foreground.

And just as the waiter conveys the results of the chefs’ work to you, JES presents
the output of the jobs to you.

w shows an overview of the job-submission process. The user performs the
parts on the left side of the figure, and the system performs the parts on the right.
In this figure, MVS and JES comprise the “system”. Later in this introduction,
distinctions will be made between MVS and JES, and between the two versions of
JES (JES2 and JESS).

USER ACTIONS
SYSTEM ACTIONS

JES
interprets
JCL and
passes it
to MVS

Determine
the
Job

A

System
Messages m\e/swdo?lfs

A

JES
collects
the output

and information
about the
Job

User
views and
interprets

output

A

Figure 2-1. JCL-Related Actions (User and MVS)

Job Control Statements
For every job that you submit, you need to tell MVS where to find the appropriate
input, how to process that input (that is, what program or programs to run), and
what to do with the resulting output.

You use JCL to convey this information to MVS through a set of statements known

as job control statements. JCL'’s set of job control statements is quite large,
enabling you to provide a great deal of information to MVS.

2-2 0S/390 V2R10.0 MVS JCL User's Guide

Introduction - Job Control Language (JCL)

Most jobs, however, can be run using a very small subset of these control
statements. Once you become familiar with the characteristics of the jobs you
typically run, you may find that you need to know the details of only some of the
control statements.

Within each job, the control statements are grouped into job steps. A job step
consists of all the control statements needed to run one program. If a job needs to
run more than one program, the job would contain a different job step for each of
those programs.

Required Control Statements
Every job must contain a minimum of the following two types of control statements:

* A JOB statement, to mark the beginning of a job and assign a name to the job.
The JOB statement is also used to provide certain administrative information,
including security, accounting, and identification information. Every job has one
and only one JOB statement.

* An EXEC (execute) statement, to mark the beginning of a job step, to assign a
name to the step, and to identify the program or procedure to be executed in the
step. You can add various parameters to the EXEC statement to customize the
way the program executes. Every job has at least one EXEC statement.

In addition to the JOB and EXEC statements, most jobs usually also contain:

* One or more DD (data definition) statements, to identify and describe the input
and output data to be used in the step. The DD statement may be used to
request a previously-created data set, to define a new data set, to define a
temporary data set, or to define and specify the characteristics of the output.

Chapter 1 lists the complete set of job control statements.

Exercise: Creating and Entering a Job

The following exercise shows you how to group the basic set of control statements
into a job step within a job, how to submit your job, and how to understand the
resulting output.

Before You Begin
Before creating any job, you need to know the following:

 Installation conventions. Every job must include special accounting and
identifying information. However, the way this information is specified varies from
one MVS installation to another.

In order to submit your JCL successfully, you need to find out the conventions
that are followed at your installation.

A worksheet has been provided at the end of this chapter (see Finstallatiod
Conventions Worksheet” on page 2-13) as a guide for documenting this
information. You may need to ask someone more familiar with your installation to
help you identify the conventions indicated in the worksheet.

* How to allocate and edit a data set. During the exercise, you will be entering
JCL statements into a data set so that you can subsequently modify and re-use
them as required. Therefore, you must know how to use ISPF panels (or an
equivalent technique) to allocate and edit the data set according to the specific
requirements of your MVS system. See Elsi i

[Set” on page 2-13 for more information.

Chapter 2. Introduction - Job Control Language (JCL) 2-3

Introduction - Job Control Language (JCL)

Notes:

1. Itis a common programming practice to give any data set containing JCL a
name that ends in JCL, such as userid. SORT.JCL.

2. Adata set that contains JCL must have a fixed-block format (RECFM=FB)
with a logical record length of 80 (LRECL=80).

The job to be done and the resources needed. You need to determine what

work you plan to have MVS perform:

— What inputs (resources) you will need and where they are located

— What program you plan to use.

— Where the output, if any, should go. (When the job completes, you will either
dispose of the output or hold it for later printing or for viewing.)

The job for this exercise is to sort a simple file and list the contents

alphabetically. Decisions about inputs, outputs, and processing have already

been made for you so that when you reach tStep 2_Edit the JCl Data Set and
1, all you will have to do is to copy the example code

provided.

How to view and understand held output. Running your job will produce three

types of held output:

— System messages (JES and MVS)

— Your JCL code with procedures expanded, overrides applied, and symbolics
resolved.

— Output as requested by the JCL code

Held output may be viewed, printed, or purged. tlsing SDSF to View Held
bulpm_tmm_a_.lab_o.n_pa.ge_uﬂ

explains how to use SDSF to view JCL output.

3 A e

page 2-7 and L ' i i -
show you how the output from the exercise should look and explain what each
part of the output means.

Step 1. Allocate a Data Set to Contain Your JCL

Use ISPF (or equivalent function) to allocate a data set named userid. SORT.JCL
(where userid is your TSO user ID) with a fixed-block format (RECFM=FB) and a
logical record length of 80 (LRECL=80).

If you are not sure how to do this, see tUsing ISPF to Allocate and Fdit a Data Set’]

Step 2. Edit the JCL Data Set and Add the Necessary JCL

Use ISPF (or equivalent function) to edit the data set that you just allocated.

Enter the following JCL statements into the data set. Note that all JCL statements
start with the special identifier //.

2-4 0S/390 V2R10.0 MVS JCL User's Guide

Introduction - Job Control Language (JCL)

//SORT JOB 'accounting_data',
// ‘'user_name',

// NOTIFY=8SYSUID,

/] MSGCLASS=message_class, [}

// MSGLEVEL=(1,1), H

/] CLASS=n,

//STEP1 EXEC PGM=IEFBR14
//SORTIN DD *» B3

NEPTUNE I

PLUTO

EARTH

VENUS

MERCURY

MARS

URANUS

SATURN

JUPITER

/* 3

//SORTOUT DD SYSOUT=+

/= 4

In the JCL code above:

Replace accounting_data with the appropriate security classification and
|dent|f|cat|on mformatlon according to the information you filled in on

¢ ”

2| Replace user_name with your name.

H NOTIFY= tells the system where to send “job complete” information.
&SYSUID tells the system to automatically insert your user ID here, so the
information will be sent to you.

4 MSGCLASS= tells the system what to do with messages the system sends
you as it processes your job; for example, use a held output class to allow
reviewing the messages later. Replace message_class with the appropriate

message class value. Check your [Installation Conventions Worksheet” on

. for the appropriate value.

5 MSGLEVEL=(1,1) tells the system to reproduce this JCL code in the output,
and to include allocation messages.

6 CLASS =n |nd|cates the system resource requwements for the job. Check
your E ? . for the appropriate
value.

The EXEC statement invokes the program IEFBR14 and identifies the first
(and only) job step in this job. You are arbitrarily naming it STEP1. All of the
control statements that follow the EXEC statement (until the next EXEC
statement, if any) are part of this job step.

IEFBR14 is the name of a program within your MVS system. It does not
actually process any data, but it enables you to run this job as a test to
verify the JCL statements, and to create the input data. Later in the
exercise you will replace IEFBR14 with the name of another program that
sorts data.

B SORTIN is the name you have given the DD statement that describes the
input data.

9 NEPTUNE through JUPITER are the items to be sorted. This method of
providing data to the program is referred to as in-stream data, an alternative
to providing the input in a separate allocated data set.

/* indicates the end of the input data stream.

Chapter 2. Introduction - Job Control Language (JCL) 2-5

Introduction - Job Control Language (JCL)

SORTOUT is the name you have given the DD statement that describes
where the output from running the job will be placed. In this example,
SYSOUT=" specifies that the output data will be directed to the SYSOUT
device defined in the MSGCLASS statement.

/* (optional) denotes the end of the job.

For detailed information on each of the JCL statements and syntax requirements,
refer to

Step 3. Submit the JCL to the System as a Job
When you have finished entering the JCL into the data set, submit the job by
entering the SUBMIT command from the ISPF EDIT command line, the TSO/E
command line, or following a READY mode message. Each of these methods is
shown below.

e ISPF EDIT command line:

EDIT ---- userid.SORT.JCL =====---ommmmmmmmmmeeeee e LINE 00000000 COL 001 080
COMMAND ===> SUBMIT SCROLL ===> CSR

KhkERIKRKK KRR KRRk Fh ARk hhrkxwhxxkxxxx [OP OF DATA *rkdkrkkkhrkbkhhhrhhrkkhhhrkhhrrhhrs
//userid JOB 'accounting data',

e TSO/E command line:

------------------------- TSO COMMAND PROCESSOR === ====mmmmmmmmmmmmmmmmmoee
ENTER TSO COMMAND OR CLIST BELOMW:

===> SUBMIT 'userid.SORT.JCL'

\FNTER SESSION MANAGER MODE ===> NO (YES or NO)

» After READY mode message:

READY
SUBMIT ‘'userid.SORT.JCL'

Note: When entering the command from the TSO command line or after a
READY message, you must surround the data set name with single
quotation marks if you include your user ID. However, you can also enter
the command without specifying your user ID and without using single
quotation marks, as shown below:

SUBMIT SORT.JCL

When you do not specify the user ID and do not include single quotes, the
system automatically inserts your user ID before the data set name. (The
insertion of the user ID is for the duration of the current job; it is not a
permanent change to the data set name.)

After entering the command, you should receive the following message indicating
that your job was submitted successfully:

2-6 0S/390 V2R10.0 MVS JCL User’s Guide

Introduction - Job Control Language (JCL)

* When submitted from the ISPF EDIT command line:

/EDIT 1) S E (RS RN S LINE 00000000 COL 001 080)
COMMAND ===> SUBMIT SCROLL ===> CSR
TOP OF DATA

//userid JOB 'accounting data',

JOB jobname (jobnumber) SUBMITTED

*kk

NG J
e When submitted from the TSO command line:
e N\

------------------------- TSO COMMAND PROCESSOR = ----------
ENTER TSO COMMAND OR CLIST BELOMW:

===> SUBMIT 'userid.SORT.JCL'

ENTER SESSION MANAGER MODE ===> NO (YES or NO)
JOB jobname (jobnumber) SUBMITTED

*k*k

- J
* When submitted after READY mode message:
/' N\
READY

SUBMIT 'userid.SORT.JCL'

JOB jobname (jobnumber) SUBMITTED

*k*k

READY
- /

When the job ends, you will receive a message indicating one of three conditions:
job successful, JCL error, or program abend. If the message indicates the error or
abend condition, review Steps 2 and 3 of this exercise to make sure that you
followed the instructions exactly, then re-submit the job.

If the job fails again, consult the appropriate manual as indicated below:
If the message begins with HASP, the job was failed by JES2. For more
information, refer to I0S/390 JES2 Messaged
If the message begins with IAT, the job was failed by JES3. For more
information, refer to

Step 4. View and Understand the Output from the Job

Use your installation’s viewing facility (for example, SDSF) to view the output and
determine whether the job completed successfully. (If you do not know how to use

SDSF to view the output, see Llising SDSF to View Held Qutput from a Joh” od
hage 2-13)

If the job is on hold in the held queue, consider printing it for a record of the job
activity.

Chapter 2. Introduction - Job Control Language (JCL) 2-7

Introduction - Job Control Language (JCL)

—

15.21.28
15.21.28
15.21.28
15.21.28
15.21.28
15.21.28
15.21.28
15.21.28
15.21.28
15.21.28
15.21.28
15.21.28
15.21.28

JOB17653
JOB17653
JOB17653
JOB17653
JOB17653
JOB17653
JOB17653
JOB17653
JOB17653
JOB17653
JOB17653
JOB17653
JOB17653

JES2 JOB LOG --

IRRO10I
ICH700011 userid
$HASP373 SORT STARTED - INIT

USERID userid

SYSTEM AQTS --

IS ASSIGNED TO THIS JOB.

LAST ACCESS AT 15:21:28 ON WEDNESDAY, OCTOBER 13,
9 - CLASS 5 - SYS AQTS

IEF4031 SORT - STARTED - TIME=15.21.28

NODE PLPSC

1996

- STEPNAME PROCSTEP PGMNAME cC
- STEP1 IEFBR14 00
IEF4041 SORT - ENDED - TIME=15.21.28

00:00:00.01

--- STEP TIMINGS ---
CPU TIME ELAPSED TIME
00:00:00.03

EXCP
1

----PAGING COUNTS----
SERV PAGE SWAP VIO SWAPS
211 0 0 0 0

- NAME-user_name

TOTALS: CPU TIME= 00:00:00.01

ELAPSED TIME=

00:00:00.05

SERVICE UNITS= 21

$HASP395 SORT ENDED

0----m- JES2 JOB STATISTICS ------

ICH70001
TEF2361
TEF2371
TEF2371
TEF1421
TEF2851
TEF2851
TEF2851
IEF3731
TEF3741
TEF3751
TEF3761

13 OCT 1996 JOB EXECUTION DATE

20 CARDS READ
45 SYSOUT PRINT RECORDS
0 SYSOUT PUNCH RECORDS
3 SYSOUT SPOOL KBYTES
0.00 MINUTES EXECUTION TIME
1 //SORT JOB '662282,D58,9211064,5=C",
// ‘user_name',
// NOTIFY=userid,
/] MSGCLASS=H,
// MSGLEVEL=(1,1),
/] CLASS=5

2 //STEP1

EXEC PGM=IEFBR14

3 //SORTIN DD *
4 //SORTOUT DD SYSOUT=+

5 //SYSIN
I userid

DD * GENERATED STATEMENT
LAST ACCESS AT 15:21:28 ON WEDNESDAY, OCTOBER 13,

ALLOC. FOR SORT STEP1
JES2 ALLOCATED TO DATAIN
JES2 ALLOCATED TO SYSIN

SORT STEP1 - STEP WAS EXECUTED - COND CODE 0000 5
userid.SORT.JOB17653.D0000101.?
userid.SORT.JOB17653.D0000103.7
userid.SORT.JOB17653.D0000102. 7

STEP /STEP1

STEP /STEP1

/ START 1996286.1521
/ STOP 1996286.1521 CPU

JOB /SORT / START 1996286.1521

JOB /SORT / STOP

1996286.1521 CPU

SYSIN
SYSOUT
SYSIN
OMIN 00.01SEC SRB

OMIN 00.01SEC SRB

JOB17653

00280009
00430010
00430010

1996

OMIN 00.00SEC VIRT
OMIN 00.00SEC

Figure 2-2. Output from Job Invoking IEFBR14 Program

4K SYS

180K EXT 4K SYS 9424K

w contains an example of the held output for this exercise. Each part of
this output is explained below:
is installation-specific and may differ on your system.
H contains JES messages about the job.
contains the JCL listing that resulted from the job.
I contains the system messages resulting from processing the job.
B condition code 0000 tells you that the program ran successfully. You receive
one condition code for each step in the job. If a condition code is non-zero, see
the documentation for the specific program you invoked. For more information

on IEFBR14, see [Using IFFBR14 Program for Testing” on page 10-16.
Step 5. Make Changes to Your JCL

When your job has run successfully, edit the data set containing the JCL and
change or add control statements as indicated below:

2-8 0S/390 V2R10.0 MVS JCL User’s Guide

Introduction - Job Control Language (JCL)

//SORT JOB 'accounting data',
// 'user_name',
// NOTIFY=&SYSUID,
// MSGCLASS=H,
// MSGLEVEL=(1,1),
/] CLASS=5
//STEPL ~ EXEC PGM=SORT
//SYSIN DD =*
SORT FIELDS=(1,75,CH,A) H
/*
//SYSOUT DD SysouT=+ E
//SORTIN DD =
NEPTUNE
PLUTO
EARTH
VENUS
MERCURY
MARS
URANUS
SATURN
JUPITER
/*
//SORTOUT DD SYSOUT=+
/*

Replace the program name with the name of your sort program. In this job,
SORT will sort the input data identified by the SORTIN DD statement.

2 | Add the SYSIN control statement. SYSIN specifies how you want the sort to
be done. In this case, you are indicating that you want to sort the fields
from column 1 to column 75 as characters in ascending sequence.

H Add the SYSOUT control statement. SYSOUT specifies the data set to
which SORT will write its messages. A SYSOUT data set is a
system-handled output data set. This data set is placed temporarily on
direct access storage. Later, the system prints it or sends it to a specified
location.

When you have finished entering the JCL into the data set, submit the job as you
did in EStep 3_Submit the JCL to the System as a Joh” on page 2-6.

Step 6. View and Understand Your Final Output
View your output as you did in EStep 4 View and Understand the Qutput from thd
Uobh” on page 2-7

e

Eigure 2-3 an page 2-10 shows an example of the held output for the completed

exercise. Each part of this output is explained below:

Chapter 2. Introduction - Job Control Language (JCL) 2-9

Introduction - Job Control Language (JCL)

-

JES2 JOB LOG -- SYSTEM AQTS -- NODE PLPSC

0 ————

13.40.27 JOBO6572 IRRO1OI USERID 'userid' IS ASSIGNED TO THIS JOB.

13.40.27 JOBO6572 ICH700011 'userid' LAST ACCESS AT 13:39:20 ON MONDAY, NOVEMBER 15, 1996

13.40.27 JOB06572 $HASP373 SORT STARTED - INIT 9 - CLASS 5 - SYS AQTS

13.40.27 JOB06572 IEF4031 SORT - STARTED - TIME=13.40.27

13.40.28 JOBO6572 -

13.40.28 JOBO6572 - REGION --- STEP TIMINGS --- ----PAGING COUNTS---- -—-

13.40.28 JOBO6572 - STEPNAME PROCSTEP PGMNAME cc USED CPU TIME ELAPSED TIME EXCP SERV PAGE SWAP VIO SWAPS

13.40.28 JOBO6572 - STEPL SORT 00 576K 00:00:00.03 00:00:00.15 20 1614 0 0 0 0

13.40.28 JOB06572 IEF4041 SORT - ENDED - TIME=13.40.28

13.40.28 JOBO6572 -

13.40.28 JOBO6572 - NAME-'user name' TOTALS: CPU TIME= 00:00:00.03 ELAPSED TIME= 00:00:00.16 SERVICE UNITS= 1614

13.40.28 JOBO6572 -

13.40.28 JOB0O6572 $HASP395 SORT ENDED ———-
0----- JES2 JOB STATISTICS ------ ——--
- 15 NOV 1996 JOB EXECUTION DATE
- 25 CARDS READ
- 81 SYSOUT PRINT RECORDS --- A
- 0 SYSOUT PUNCH RECORDS
- 4 SYSOUT SPOOL KBYTES
- 0.00 MINUTES EXECUTION TIME ——

1 //SORT JOB 'accounting data', JO0B06572 ——
// ‘'userid',
// NOTIFY=&SYSUID,
/] MSGCLASS=H,
// MSGLEVEL=(1,1),
// CLASS=5 --—-H
2 //STEP1 EXEC PGM=SORT
3 //SYSIN DD =
4 //SYSOUT DD SYSOUT=+
5 //SORTIN DD =
6 ;/SORTOUT DD SYSOUT=*
* -

ICH700011 'userid' LAST ACCESS AT 13:39:20 ON MONDAY, NOVEMBER 15, 1996 ———-

IEF2361 ALLOC. FOR SORT STEP1

1EF2371 JES2 ALLOCATED TO SYSIN

1EF2371 JES2 ALLOCATED TO SYSOUT

IEF2371 JES2 ALLOCATED TO SORTIN

1EF2371 JES2 ALLOCATED TO SORTOUT

IEF1421 SORT STEP1 - STEP WAS EXECUTED - COND CODE 0000 H

IEF2851 userid.SORT.JOBO6572.D0000101.7? SYSIN

IEF2851 userid.SORT.JOB06572.D0000103.? SYSOUT

IEF2851 userid.SORT.JOBO6572.D0000102.? SYSIN

IEF2851 userid.SORT.JOBO6572.D0000104.? SYSOUT

IEF3731 STEP /STEP1 / START 1996319.1340

IEF3741 STEP /STEP1 / STOP 1996319.1340 CPU OMIN 00.03SEC SRB OMIN 00.00SEC VIRT 576K SYS 188K EXT 4096K SYS 9444K

IEF3751 JOB /SORT ~ / START 1996319.1340

IEF3761 JOB /SORT ~ / STOP 1996319.1340 CPU OMIN 00.03SEC SRB OMIN 00.00SEC
1ICE1431 © BLOCKSET SORT TECHNIQUE SELECTED - A

ICEQOOI 1 --- CONTROL STATEMENTS/MESSAGES ---- 5740-SM1 REL 12.0 ---- 13.40.28 NOV 15, 1996 --

0 SORT FIELDS=(1,75,CH,A)

ICE088I 1 SORT LSTEPL . , INPUT LRECL = 80, BLKSIZE = 80, TYPE = F

ICE0931 O MAIN STORAGE = (MAX,4194304,4194304)

ICE1561 O MAIN STORAGE ABOVE 16MB = (3624960,3624960)

ICE1281 O OPTIONS: SIZE=4194304,MAXLIM=1048576,MINLIM=450560,EQUALS=N,LIST=Y,ERET=RC16 ,MSGDDN=SYSOUT

ICE1291 O OPTIONS: VIO=N,RESDNT=ALL ,SMF=NO ,WRKSEC=Y,OUTSEC=Y,VERIFY=N,CHALT=N,DYNALOC=N ,ABCODE=MSG

ICE130I O OPTIONS: RESALL=4096,RESINV=0,SVC=109 ,CHECK=Y,WRKREL=Y,OUTREL=Y,CKPT=N,STIMER=Y,COBEXIT=C0B1

ICE1311 O OPTIONS: TMAXLIM=4194304,ARESALL=0,ARESINV=0,0VERRGN=65536,EXCPVR=NONE ,CINV=Y,CFW=Y

ICE1321 O OPTIONS: VLSHRT=N,ZDPRINT=N,IEXIT=N,TEXIT=N,LISTX=N,EFS=NONE ~ ,EXITCK=S,PARMDDN=DFSPARM ,FSZEST=N

ICE1331 O OPTIONS: HIPRMAX=OPTIMAL ,DSPSIZE=MAX

ICE0841 O BSAM ACCESS METHOD USED FOR SORTOUT

ICEQ841 O BSAM ACCESS METHOD USED FOR SORTIN

ICE090I O OUTPUT LRECL = 80, BLKSIZE = 80, TYPE = F

ICE080I O IN MAIN STORAGE SORT

ICEQ551 O INSERT 0, DELETE 0

ICE0541 O RECORDS - IN: 9, OUT: 9

ICE1341 O NUMBER OF BYTES SORTED: 720

ICE1801 O HIPERSPACE STORAGE USED = OK BYTES

ICE1881 O DATA SPACE STORAGE USED = 0K BYTES

ICE0521 O END OF DFSORT ———

EARTH -

JUPITER

MARS

MERCURY

NEPTUNE --—- 3

PLUTO

SATURN

URANUS

VENUS ---

Figure 2-3. Output from Job Invoking SORT Program

is installation-specific and may differ on your system.
contains JES messages about the job.
contains the JCL listing that resulted from the job.

contains the system messages resulting from processing the job.

condition code 0000 tells you that the program ran successfully. You receive
one condition code for each step in the job. If a condition code is non-zero, see
the documentation for the specific program you invoked (in this case, SORT).
@ contains the output produced by the SORT program.

2-10 0S/390 V2R10.0 MVS JCL User's Guide

Introduction - Job Control Language (JCL)

More Complex Jobs

In-Stream and Cataloged Procedures

As you gain more experience in submitting jobs, you will find that you often use the
same set of job control statements repeatedly with little or no change.

To save time and prevent errors, you can prepare sets of job control statements
that you can execute again and again. You can do this through the use of two types
of procedures: in-stream procedures and cataloged procedures.

In-Stream Procedures

An in-stream procedure is a hamed set of job control statements in a job that can
be re-executed within that job, simply by invoking the name of the procedure. This
enables you to execute the set of control statements more than one time in the
same job without having to repeat the statements.

[able 2-1 shows a job that contains an in-stream procedure. Its name is PTEST,
and it ends with a PEND statement.

Table 2-1. In-Stream Procedure

Job Control Statement Explanation

//J0B1 JOB
//PTEST PROC
//PSTA EXEC

//DDA DD
//DDB DD
//DDOUT DD
//PSTB EXEC
//DDC DD
//DDREP DD
// PEND

//STEP1 EXEC
//PSTA.IN DD

/*

idata)

CT1492,'JIM MOSER' Starts job

DSNAME=D.E.F,DISP=0LD Request 3 data sets for first procedure step
DSNAME=DATA1,DISP=(MOD, PASS)

DSNAME=+. PSTA.DDB,DISP=0LD Request 2 data sets for second procedure step

PROC=PTEST First step in JOB1, executes procedure

Starts in-stream procedure
Identifies first step in procedure

Identifies second step in procedure

Ends in-stream procedure

Adds in-stream data to procedure step
PSTA

Note: The maximum number of in-stream procedures you can code in any job is
15.

Cataloged Procedures

A cataloged procedure, like an in-stream procedure, is a named set of job control
statements. However, these control statements are placed, or cataloged, in a
partitioned data set (PDS) or partitioned data set extended (PDSE) known as a
procedure library. This enables a cataloged procedure to be invoked by any job.

Cataloged procedures can be placed in the system procedure library
SYS1.PROCLIB or in any user-specified procedure library (for example JCLLIB).
For additional information on procedure libraries, refer to

Chapter 2. Introduction - Job Control Language (JCL) 2-11

Introduction - Job Control Language (JCL)

[able 2-A shows an example of a cataloged procedure named MYPROC. [[able 2-3
shows an example of a job that executes MYPROC.

Table 2-2. Cataloged Procedure: Member MYPROC in SYS1.PROCLIB

Job Control Statement Explanation
//MYPROC PROC Starts cataloged procedure
//MY1 EXEC PGM=WORK1 Identifies first step in procedure
//MYDDA DD SYSOUT=A Request 2 data sets for first procedure step
//MYDDB DD SYSOUT=+
//MY2 EXEC PGM=TEXT5 Identifies second step in procedure
//MYDDC DD DSNAME=F.G.H,DISP=0LD Request 2 data sets for second procedure step
//MYDDE DD SYSOUT=+
// PEND Indicate end of procedure.

Table 2-3. Job that Executes Cataloged Procedure MYPROC

Job Control Statement Explanation
//J0B2 JOB ,'JACKIE DIGIAN' Starts job
//STEPA EXEC PROC=MYPROC First step in JOB2, executes procedure
//MY2.MYDDC DD DISP=(OLD,DELETE) Modifies DD statement MYDDC in procedure step MY2

Note: Before cataloging any procedure, test it as an instream procedure first.

Input Streams

Just as you can group several steps into one job, you can group several jobs
together into one input stream. Any time jobs are placed in a series and entered
through one input device, the series is considered an input stream. The input device
can be a terminal, a magnetic tape device, or a direct access device.

[able 2-4 shows a data set containing an input stream of three jobs.

Table 2-4. Job Boundaries in a Three-Job Input Stream
Job Control Statement Explanation

Job 1 //J0B1 JOB AT45,'GARY PUCHKOFF' First job
//STEP1 EXEC PGM=A33
//DDA DD DSNAME=CATDS,DISP=0LD
//DDB DD SYSOUT=A

Job 2 //J0B2 JOB AT87,'JAN BUSKIRK' Second job
//STEPA EXEC PGM=REP
//DD1 DD *

(data)

//bD2 DD Sysout=C

Job 3 //J0B3 JOB 1726, 'MARK LAMAN' Third job
//ST1 EXEC PGM=ADDER
//DDIN DD DATA

idata)

/*
//DDOUT DD SYSOUT=A

2-12 0S/390 V2R10.0 MVS JCL User’s Guide

Introduction - Job Control Language (JCL)

Additional Information

Installation Conventions Worksheet

Using this worksheet, identify the conventions used at your MVS installation.
Documenting this information will help you create JCL data sets that your system
will accept. You may need to ask someone more familiar with your installation to
help you identify the conventions indicated in the worksheet.

Convention Installation-Specific Attribute(s)
Job Entry Subsystem (JES2/JES3)
Data Set Editor

Security Requirements

Volume Serial

Generic Unit

Space Units

Primary Quantity

Secondary Quantity
Data Set Allocation

Directory Blocks

Record Format Fixed Block (RECFM=FB)
Logical Record Length 80 (LRECL=80)
Block Size e 0 for Sequential Data Sets

e >0 for Partitioned Data Sets

Accounting Data

Message Class
Job Information and

Requirements Input Processing Information

Output Processing
Information

Using ISPF to Allocate and Edit a Data Set

The following instructions explain how to use ISPF to allocate a data set, edit it, and
place your JCL control statements in it.

Note: ISPF screens may differ slightly from one MVS installation to another.

1. On the ISPF Primary Option menu, select the appropriate item to display the
Data Set Utility menu.

2. On the Data Set Utility menu, select Option A (allocate new data set) and enter

a data set name as shown in step 3 below, replacing userid with your own user
ID.

Chapter 2. Introduction - Job Control Language (JCL) 2-13

Introduction - Job Control Language (JCL)

/: ——————————————————————————— DATA SET UTILITY =--emmmmmmmmmmmmmmmememm oo)
OPTION == A
A - Allocate new data set C - Catalog data set
R - Rename entire data set U - Uncatalog data set
D - Delete entire data set S - Data set information (short)
blank - Data set information M - Enhanced data set allocation
ISPF LIBRARY:
PROJECT ===>
GROUP ===>
TYPE ===>
OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===> 'userid.SORT.JCL'
VOLUME SERIAL ===> (If not cataloged, required for option "C)
DATA SET PASSWORD ===> (If password protected)
NG J

3. On the Allocate New Data Set menu, fill in the fields indicated in the example
below, replacing volser, unit, and size with appropriate values according to the

’”

information you filled in on Llnstallation Canventions Worksheet” on page 2-13

---------------------- ALLOCATE NEW DATA SET ==mmmmmmmmmmmooooooo o
COMMAND ===>

DATA SET NAME: userid.SORT.JCL

VOLUME SERIAL => yolser (Blank for authorized default volume) =
GENERIC UNIT = (Generic group name or unit address) =*
SPACE UNITS => unit (BLKS, TRKS, or CYLS)

PRIMARY QUANTITY =>1 (In above units)

SECONDARY QUANTITY ===> 1 (In above units)

DIRECTORY BLOCKS => 0 (Zero for sequential data set)

RECORD FORMAT => FB

RECORD LENGTH => 80

BLOCK SIZE => size

EXPIRATION DATE ===> (YY/MM/DD, YYYY/MM/DD

YY.DDD, YYYY.DDD in Julian form
DDDD for retention period in days
or blank)

(% Only one of these fields may be specified)

- J

4. Note that message “DATA SET ALLOCATED?” indicates that the allocation has
been completed.

(---------------------------- DATA SET UTILITY =----ommme- DATA SET ALLOCATED)

5. Use ISPF to edit the allocated data set and enter the JCL control statements
into the data set.

2-14 0S/390 V2R10.0 MVS JCL User’s Guide

Introduction - Job Control Language (JCL)

~
(EDIT o= Userid.SORT.JCL ~-emmmmmmmememmmmmmmmmmmmmmmmmmee COLUMNS 001 072
COMMAND ===> SCROLL ===> CSR
TOP OF DATA
BOTTOM OF DATA
. /
6. If you are currently working on the exercise for creating and entering a JCL job,
return to i 2
now.

Using SDSF to View Held Output from a Job

The following instructions explain how to use SDSF with a JES2 system to view the
output from your job.

Note: SDSF screens may differ slightly from one JES2 installation to another. If
you are using JESS, you can use (E)JES or a comparable tool to view the
output.

1. Display the SDSF Primary Option Menu and select Option H

~
/Q1R4M0 NZO6 ------------- SDSF PRIMARY OPTION MENU -------mmmmmmmmmmmmmmmm e
COMMAND INPUT ===> H SCROLL ===> PAGE
Type an option or command and press Enter.
DA - Display active users of the system
I - Display jobs in the JES2 input queue
0 - Display jobs in the JES2 output queue
H - Display jobs in the JES2 held output queue
ST - Display status of jobs in the JES2 queues
TUTOR - Short course on SDSF (ISPF only)
END - Exit SDSF
Licensed Materials - Property of IBM
5665-488 (C) Copyright IBM Corp. 1981, 1993. A1l rights reserved.
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
- J

2. To view an individual data set:

a. On the SDSF Held Output Display All Classes panel, enter a question mark
(?) next to the job whose output data sets you want to view.

Chapter 2. Introduction - Job Control Language (JCL) 2-15

Introduction - Job Control Language (JCL)

('SDSF HELD OUTPUT DISPLAY ALL CLASSES 174 LINES LINE 1-2 (2) h
COMMAND INPUT ===> SCROLL ===> PAGE
PREFIX=* DEST=(ALL) OWNER=userid
NP JOBNAME JOBID ~ OWNER PRTY C ODISP DEST TOT-REC TOT-P
? jobname J0B20482 userid 7 H HOLD LOCAL
87
Jjobname JOB20517 userid 7 H HOLD LOCAL 87
- J
b. On the SDSF Job Data Set Display panel, enter the letter S next to the
name of the data set you want to display.
(SOSF J0B DATA SET DISPLAY - JOB userids (J0B20482) LINE 1-5 (5) h
COMMAND INPUT ===> SCROLL ===>
PREFIX=* DEST=(ALL) OWNER=userid
NP DDNAME STEPNAME PROCSTEP DSID OWNER C DEST REC-CNT
S JESMSGLG JES2 2 userid H LOCAL 22
JESJCL JES2 3 userid H LOCAL 6
JESYSMSG JES2 4 userid H LOCAL 28
SYSOUT SORT 103 userid H LOCAL 22
SORTOUT ~ SORT 104 userid H LOCAL 9
- J
Note: On the above panel:
+ JESMSGLG contains system messages.
* JESJCL contains JCL with procedures expanded, overrides
applied, and symbolics resolved.
* JESYSMSG contains MVS system messages.
* SYSOUT contains messages produced by the program (in this
case, SORT) executed in this job.
* SORTOUT contains the output produced by the program (in this
case, SORT) executed in this job.
c. The system displays the selected data set (in this case, JESMSGLG):
é JES2 JOB LOG -- SYSTEM AQTS -- NODE PLPSC
15.21.28 J0B17653 IRRO1OI USERID userid IS ASSIGNED TO THIS JOB.
15.21.28 JOB17653 1ICH700011 userid LAST ACCESS AT 15:21:28 ON WEDNESDAY, OCTOBER 13, 1993
15.21.28 JOB17653 $HASP373 SORT STARTED - INIT 9 - CLASS 5 - SYS AQTS
15.21.28 JOB17653 IEF403I SORT - STARTED - TIME=15.21.28
15.21.28 JOB17653 -
15.21.28 JOB17653 - REGION --- STEP TIMINGS --- ----PAGING COUNTS----
15.21.28 JOB17653 - STEPNAME PROCSTEP PGMNAME cC USED CPU TIME ELAPSED TIME EXCP SERV PAGE SWAP VIO SWAPS
15.21.28 JOB17653 - STEP1 IEFBR14 00 4K 00:00:00.01 00:00:00.03 1 211 0 0 0 0
15.21.28 JOB17653 IEF4041 SORT - ENDED - TIME=15.21.28
15.21.28 JOB17653 -
15.21.28 JOB17653 - NAME-user_name TOTALS: CPU TIME= 00:00:00.01 ELAPSED TIME= 00:00:00.05 SERVICE UNITS=
2%51).21.28 JOB17653 -
15.21.28 JOB17653 $HASP395 SORT ENDED
3. To view the entire output:
a. On the SDSF Held Output Display All Classes panel, enter the letter S next
to the job whose output you want to see.
('SDSF HELD OUTPUT DISPLAY ALL CLASSES 174 LINES LINE 1-2 (2) h
COMMAND INPUT ===> SCROLL ===> PAGE
PREFIX=+ DEST=(ALL) OWNER=userid
NP JOBNAME JOBID ~ OWNER PRTY C ODISP DEST TOT-REC TOT-P
S Jjobname JO0B20482 userid 7 H HOLD LOCAL 87
Jjobname J0B20517 userid 7 H HOLD LOCAL 87
N J

b. You will be presented with one view of the entire output (as shown in

Eigure 2-3 on page 2-10).

2-16 0S/390 V2R10.0 MVS JCL User's Guide

Introduction - Job Control Language (JCL)
Helpful Utilities

[able 2-9 lists some common tasks that manage data sets, as well as utilities IBM
provides that you can use to perform the tasks. For additional information on these
utilities, see:

e |SPF/PDF Guide and Reference

Other utility programs may be available to perform these and other system tasks.

Table 2-5. Tasks and Utility Programs

Task Utility Name
Allocate data sets » TSO/E ALLOCATE command
* ISPF/PDF Data Set Utility
» Access Method Services ALLOCATE
command
» JCL DD statement, DISP=NEW parameter
Delete data sets * TSO/E DELETE command
* ISPF/PDF Data Set Utility
* Access Method Services DELETE
command
e JCL DD statement, DISP=OLD,DELETE
parameter
Compare data sets IEBCOMPR (DFSMSdfp)
Copy data sets IEBCOPY (DFSMSdfp)
Delete records in data sets IEBUPDTE (DFSMSdfp)
Edit/print/punch data sets IEBPTPCH (DFSMSdfp)
Insert records into data sets IEBUPDTE (DFSMSdfp)
Merge data sets IEBCOPY (DFSMSdfp)
Modify data sets IEBUPDTE (DFSMSdfp)
Print data sets IEBPTPCH (DFSMSdfp)
Rename members/data sets IEBCOPY (DFSMSdfp)
Scratch data sets IEHPROGM (DFSMSdfp)

Chapter 2. Introduction - Job Control Language (JCL) 2-17

Introduction - Job Control Language (JCL)

2-18 05/390 V2R10.0 MVS JCL User's Guide

Chapter 3. Job Control Tasks

For your program to execute on the computer and perform the work you designed it
to do, your program must be processed by your operating system.

Your operating system consists of an MVS/SP base control program (BCP) with a
job entry subsystem (JES2 or JES3) and DFSMS/MVS DFSMSdfp installed with it.

For the operating system to process a program, programmers must perform certain
job control tasks. These tasks are performed through the job control statements,
which consist of:

JCL statements

JES2 control statements

JES3 control statements

Entering Jobs
Job Steps

You enter a program into the operating system as a job step. A job step consists of
the job control statements that request and control execution of a program and
request the resources needed to run the program. A job step is identified by an
EXEC statement. The job step can also contain data needed by the program. The
operating system distinguishes job control statements from data by the contents of
the records.

Jobs
A job is a collection of related job steps. A job is identified by a JOB statement.
Input Streams

Jobs placed in a series and entered through one input device form an input
stream. The operating system reads an input stream into the computer from an
input/output (I/0) device or an internal reader. The input device can be a card
reader, a magnetic tape device, a terminal, or a direct access device. An internal
reader is a buffer that is read from a program into the system as though it were an
input stream.

Cataloged and In-Stream Procedures

You often use the same set of job control statements repeatedly with little or no
change, for example, to compile, assemble, link-edit, and execute a program. To
save time and prevent errors, you can prepare sets of job control statements and
place, or catalog, them in a partitioned data set (PDS) or partitioned data set
extended (PDSE) known as a procedure library. The data set attributes of a
procedure library should match SYS1.PROCLIB (record length of 80 and record
format of FB). Such a set of job control statements in the system procedure library,
SYS1.PROCLIB (or an installation-defined procedure library), is called a cataloged
procedure.

To test a procedure before placing it in the catalog, place it in an input stream and

execute it; a procedure in an input stream is called an in-stream procedure. The
maximum number of in-stream procedures you can code in any job is 15.

© Copyright IBM Corp. 1988, 2000 3-1

Tasks

Steps in a Job

A job can be simple or complex; it can consist of one step or of many steps that call
many in-stream and cataloged procedures. A job can consist of up to 255 job steps,
including all steps in any procedures that the job calls. Specification of a greater
number of steps produces a JCL error.

Processing Jobs

The operating system performs many job control tasks automatically. You can
influence the way your job is processed by the JCL and JES2 or JES3 parameters
you code. For example, the job entry subsystem selects jobs for execution, but you
can speed up or delay selection of your job by the parameters you code.

Requesting Resources

Data Set Resources

To execute a program, you must request the data sets needed to supply data to the
program and to receive output records from the program.

Sysout Data Set Resources

A sysout data set is a system-handled output data set. This data set is placed
temporarily on direct access storage. Later, at the convenience of the system, the
system prints it, punches it, or sends it to a specified location. Because sysout data
sets are processed by the system, the programmer can specify many parameters to
control that processing.

Task Charts

The following charts list the job control tasks, which are described in the [0S/39d
MVS .ICI User’s Guidg, in four groups:

+ Entering jobs in [able 3-1 on page 3-3

* Processing jobs in Mahle 3-2 on page 3-§

+ Requesting data set resources in [able 3-3 on page 3-8

+ Requesting sysout data set resources in [[able 3-4 on page 3-8

For each task, the charts list the parameters and statements that can be used to
perform it. In many cases, the same task can be performed using different
parameters on different statements. Where a parameter can appear on both a JOB
and EXEC statement, it applies to the entire job when coded on the JOB statement
but only to a step when coded on an EXEC statement.

The system is designed to enable users to perform many types of job control in

many ways. To allow this flexibility, only two job entry tasks are required:

 ldentification: The job must be identified in the jobname field of a JOB
statement.

« Execution: The program or procedure to be executed must be named in a PGM
or PROC parameter on an EXEC statement.

Therefore, the following statements are the minimum needed to perform a job
control task:

3-2 0S/390 V2R10.0 MVS JCL User’s Guide

//jobname JOB

/1

Table 3-1. Tasks for Entering Jobs

EXEC

{PGM=program-name '}

{PROC=procedure-name}
{procedure-name}

Tasks

TASKS FOR STATEMENTS AND PARAMETERS
NG JCL Statements JES2 JES3
JOB EXEC Other JCL Statements Statements
Identification
of job jobname field null statement (JES3
only)
of step stepname field
of procedure PROC PEND
of INCLUDE INCLUDE
group
of account accounting ACCT /*"NETACCT /"NETACCT
information or
pano in JOB
JES2 accounting
information
of programmer programmer’s ROOM on PNAME, BLDG,
name and room /*JOBPARM DEPT, ROOM,
in JOB JES2 and USERID on
accounting /"NETACCT
information
USER
Execution
of program PGM
of procedure PROC
when restarting | RESTART RD RD SYSCHK DD RESTART on FAILURE and
and with /*JOBPARM JOURNAL on
checkpointing /"MAIN
deadline or DEADLINE on
periodic /"MAIN
when dependent /I"NET

on other jobs

at remote node

XMIT JCL (JES3
only)

/*ROUTE XEQ
XEQ /*XMIT

/"ROUTE XEQ

Job Input Contro

by holding job TYPRUN CLASS HOLD, UPDATE,

entrance or CLASS on
/"MAIN //*NET

by holding local /"PAUSE

input reader

by copying input | TYPRUN CLASS

stream (JES2

only)

from remote work /*SIGNON /*SIGNON

station /*SIGNOFF /*SIGNOFF

Communication

Chapter 3. Job Control Tasks

3-3

Tasks

Table 3-1. Tasks for Entering Jobs (continued)

TASKS FOR STATEMENTS AND PARAMETERS
ESEER'NG JCL Statements JES2 JES3
JOB EXEC Other JCL Statements Statements
from JCL to COMMAND /*$command /[**command
system Command
from JCL to /*MESSAGE /[*OPERATOR
operator
from JCL to Comment field Comment field /[*comment, also Comment field
programmer unless no comment field on all on
parameter field statements but null /["ENDPROCESS
and //*PAUSE
from JCL to PARM
program
from system to WARNING on FETCH on
operator BYTES, CARDS, /I*MAIN
LINES, and WARNING on
PAGES BYTES, CARDS,
LINES, and
PAGES on
/I*MAIN
from system to NOTIFY *NOTIFY ACMAIN on
userid -of job NOTIFY on /I*MAIN with JOB
completion -of OUTPUT JCL NOTIFY
print completion statement
from TSO/E USER on
userid to system /I*MAIN
from functional PIMSG on OUTPUT
subsystem to JCL
programmer
through job log MSGCLASS JESDS on OUTPUT |NOLOG on
MSGLEVEL log JCL /*JOBPARM
in JOB JES2
accounting
information
Protection
through RACF GROUP
PASSWORD
SECLABEL
USER
Resource Control
of program JOBLIB DD,
library STEPLIB DD, DD
defining PDS or
PDSE member
of procedure JCLLIB PROCLIB on PROC and
library /*JOBPARM UPDATE on
/I*"MAIN
of INCLUDE JCLLIB PROCLIB on PROC and
group /*JOBPARM UPDATE on
/I*MAIN

3-4 0S/390 V2R10.0 MVS JCL User’s Guide

Table 3-1. Tasks for Entering Jobs (continued)

Tasks

TASKS FOR STATEMENTS AND PARAMETERS
ESEER'NG JCL Statements JES2 JES3
JOB EXEC Other JCL Statements Statements
of address space | REGION REGION LREGION on
ADDRSPC ADDRSPC /*MAIN
of processor SYSAFF on SYSTEM on
/*JOBPARM /*MAIN
of spool partition SPART and
TRKGRPS on
/*MAIN
Table 3-2. Tasks for Processing Jobs
TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
igggessme JCL Statements JES2 JES3
JOB EXEC Other JCL Statements Statements
Processing Control
by conditional COND COND IF/THEN/ELSE/ENDIFCANCEL on CANCEL on
execution statement construct |BYTES, CARDS, |[BYTES, CARDS,
CANCEL on LINES, and LINES, and
BYTES, CARDS, PAGES on PAGES on
LINES, and /*JOBPARM /*MAIN
PAGES
by timing TIME or time in | TIME TIME on
execution JOB JES2 /*JOBPARM
accounting
information
for testing: TYPRUN CLASS |PGM=IEFBR14 SYSMDUMP DD /*"PROCESS
1. by altering DUMP on SYSUDUMP DD /"ENDPROCESS
usual BYTES, CARDS, |PGM=JCLTEST SYSABEND DD DUMP in
processing LINES, and PGM=JSTTEST BYTES, CARDS,
2. by dumping |PAGES (JESS3 only) To format dump on LINES, and
after error 3800 Printing PAGES on
Subsystem, /*MAIN
FCB=STD3 and
CHARS=DUMP
on dump DD
Performance Control
by job class CLASS CLASS on
assignment /"MAIN
by selection PRTY /*PRIORITY
priority
by performance |PERFORM PERFORM
group
assignment
by IORATE on
I/O-to-processing /"MAIN

ratio

Chapter 3. Job Control Tasks

3-5

Tasks

Table 3-3. Tasks for Requesting Data Set Resources

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
REQUESTING 1 0) “siatements JES2 JES3
DATA SET Statements Statements
RESOURCES DD OUTPUT JCL Other JCL
Identification
of data set DSNAME UPDATE on
/I*MAIN
of in-stream data | * or DATA SYSIN /* or xx delimiter /["DATASET
set DD DLM /["ENDDATASET
of data set on DSID
3540 Diskette
Input/Output Unit
through catalog |JOBCAT DD
STEPCAT DD
through label label-type on
LABEL
by location on data-set-
tape sequence-
number on
LABEL
as TCAM QNAME
message data
set
from or to TERM
terminal
Description
of status DISP
of data attributes | DCB
- by modeling AMP
DATACLAS
KEYLEN
DSNTYPE
KEYOFF
LRECL
RECFM
RECORG
LIKE
REFDD
of data for CCSID
ISO/ANSI
Version 4 tapes
of migration and | MGMTCLAS
backup
Protection
through RACF PROTECT
SECMODEL

3-6 0S/390 V2R10.0 MVS JCL User’s Guide

Table 3-3. Tasks for Requesting Data Set Resources (continued)

Tasks

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
REQUESTING [0 “statements JES2 JES3
DATA SET Statements Statements
RESOURCES DD OUTPUT JCL Other JCL
for ACCODE
ISO/ANSI/FIPS
Version 3 tapes
and ISO/ANSI
Version 4 tapes
by passwords PASSWORD and
NOPWREAD on
LABEL
of access to IN and OUT on
BSAM and LABEL
BDAM data sets
Allocation
of device UNIT CLASS on JOB SETUP and
STORCLAS (JES3 only) CLASS on
/*MAIN
of tape or direct | VOLUME EXPDTCHK and
access volume STORCLAS RINGCHK on
/*MAIN
of direct access | SPACE AVGREC
space DATACLAS
of virtual 1/0 UNIT
DSNAME=
temporary
data set
with deferred DEFER on UNIT
volume mounting
with volume /*SETUP

pre-mounting

dynamic

DYNAMNBR on
EXEC

Processing Control

by suppressing DUMMY

processing NULLFILE on
DSNAME

by postponing DDNAME

specification

with CHKPT RESTART on JOB

checkpointing SYSCKEQV DD RD on EXEC
SYSCHK DD

by subsystem SUBSYS CNTL CNTL ENDCNTL

by TCAM job or |QNAME

task

End Processing

unallocation FREE

Chapter 3. Job Control Tasks 3-7

Tasks

Table 3-3. Tasks for Requesting Data Set Resources (continued)

GROUPID (JES2
only)

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
REQUESTING [0, "oy tements JES2 JES3
DATA SET Statements Statements
RESOURCES DD OUTPUT JCL Other JCL
disposition of DISP OUTDISP on
data set /*OUTPUT

RETPD

EXPDT
release of RLSE on SPACE
unused direct
access space
disposition of RETAIN and
volume PRIVATE on

VOLUME
Table 3-4. Tasks for Requesting Sysout Data Set Resources
TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
REQUESTING [0, “siatements JES2 JES3
DATA SET Statements Statements
RESOURCES DD OUTPUT JCL Other JCL
Identification
as a sysout data | SYSOUT
set
name (last DSNAME
qualifier)
of output class class on CLASS MSGCLASS on JOB

SYSOUT with SYSOUT=" or

CLASS=* and
SYSOUT=(,)
of data set on DSID
3540 Diskette
Input/Output Unit
Description
of data attributes | DCB
Protection
of printed output DPAGELBL
SYSAREA

Performance Control
by queue PRTY
selection
Processing Control
with additional OUTPUT DEFAULT
parameters code-name on

SYSOUT
by segmenting SEGMENT
with other data class on THRESHLD
sets SYSOUT (JES3 only)

3-8 057390 V2R10.0 MVS JCL User’s Guide

Table 3-4. Tasks for Requesting Sysout Data Set Resources (continued)

Tasks

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
REQUESTING [0 “statements JES2 JES3
DATA SET Statements Statements
RESOURCES DD OUTPUT JCL Other JCL
by external writer | writer-name on WRITER
SYSOUT
by mode PRMODE
by holding HOLD class on CLASS OUTDISP
SYSOUT
by suppressing DUMMY class on | OUTDISP=PURGE
output SYSOUT on OUTPUT
with CKPTLINE CKPLNS and
checkpointing CKPTPAGE CKPPGS on
CKPTSEC /*OUTPUT
by Print Services COLORMAP
Facility (PSF) COMSETUP
DUPLEX
FORMDEF
FORMLEN
INTRAY
OFFSETXB
OFFSETXF
OFFSETYB
OFFSETYF
OVERLAYB
OVERLAYF
PAGEDEF
PRTERROR
RESFMT
USERLIB
by IP Printway PORTNO
End Processing
unallocation FREE
SPIN
Destination Control
to local or remote | DEST class on DEST /*ROUTE PRINT |ORG on //*MAIN
device or to SYSOUT COMPACT /*ROUTE
another node PUNCH
to another ACMAIN on
processor /*MAIN
to internal reader |INTRDR as /*EOF
writer-name on /*DEL
SYSOUT /*PURGE
/*SCAN
to terminal TERM
to assist in ADDRESS ROOM on
sysout BUILDING /*OUTPUT
distribution DEPT
NAME
ROOM
TITLE

Output Formatting

Chapter 3. Job Control Tasks

3-9

Tasks

Table 3-4. Tasks for Requesting Sysout Data Set Resources (continued)

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
REQUESTING [0, "oy tements JES2 JES3
DATA SET Statements Statements
RESOURCES DD OUTPUT JCL Other JCL
to any printer COPIES FCB COPIES forms, copies, and COPIES, COPIES and
form-name on FCB linect on JOB JES2 | FORMS, and FORMS on
SYSOUT UCS FORMS accounting LINECT on /"FORMAT PR
LINECT information /*JOBPARM
(JES2 only) COPIES, FCB,
UCS and FORMS on
CONTROL /*OUTPUT
to 3800 Printing |BURST BURST CHARS BURST on CHARS and
Subsystem in CHARS FLASH MODIFY /*JOBPARM FLASH on
addition to most | FLASH TRC /*FORMAT PR
of printer MODIFY CHARS, FLASH,
parameters DCB= and BURST on
OPTCD=J /*OUTPUT
to 3211 Printer INDEX (JES2
with indexing LINDEX only)
feature
to punch COPIES FCB COPIES
form-name on FCB
SYSOUT FORMS
DCB=FUNC=I
of dumps on CHARS=DUMP |CHARS=DUMP
3800 Printing FCB=STD3 FCB=STD3
Subsystem
Output Limiting
OUTLIM lines and cards BYTES, CARDS, |BYTES, CARDS,
on JOB JES2 LINES, and LINES, and
accounting PAGES on PAGES on
information /*JOBPARM /*MAIN
BYTES, CARDS,
LINES, and PAGES
on JOB
USERDATA Specifications
Installation USERDATA
specifications

3-10 0S/390 V2R10.0 MVS JCL User's Guide

Part 2. Tasks for Entering Jobs

This part describes how to enter jobs into the system. The tasks required to enter a
job are:

* ldentification

» Execution

Other tasks can optionally be performed:
» Job input control

* Communication

* Protection

* Resource control

© Copyright IBM Corp. 1988, 2000

Part 2. Tasks for Entering Jobs

0S/390 V2R10.0 MVS JCL User’'s Guide

Chapter 4. Entering Jobs - Identification

Table 4-1. Identification Task for Entering Jobs

TASKS FOR
ENTERING JOBS

STATEMENTS AND PARAMETERS FOR TASK

information USER

JCL Statements JES2 JES3
JOB EXEC Other JCL Statements Statements
Identification
of job jobname field
null statement
(JESS only)
of step stepname field
of procedure
PROC
PEND
of INCLUDE INCLUDE
group
of account accounting ACCT /*NETACCT /I"NETACCT
information or
pano in JOB
JES2 accounting
information
of programmer programmer’s- ROOM on PNAME, BLDG,
name and room in /*JOBPARM DEPT, ROOM,
JOB JES2 and USERID on
accounting /I*NETACCT

Identification of Job

Each job must be identified in the jobname field of the JOB statement. This
identification is required and is coded:

//jobname JOB

The next JOB statement or the end of the input stream identifies the end of a job. A
null statement can identify the end of a job or input stream.

Examples

//MYJOB JOB

//MCS167 JOB

//R#123 JOB

//@5AB JOB

/1

This fifth statement is a null statement.

© Copyright IBM Corp. 1988, 2000

4-1

Entering Jobs - Identification

Identification of Step

A step name is required on only certain EXEC statements. In practice, name all
steps. The system uses the step name in messages. If you omit the step name, the
system leaves this field blank in messages, making it difficult to decide what step
caused each message. A step name is coded:

//stepname EXEC

Examples

//STEP1 EXEC PGM=A
//CHECK EiEC PROC=MHB15
//A$9 EkEC PGM=RPTWRT

//MYPROGRM EXEC PGM=CALC

Identification of Procedure

For an in-stream procedure, identify the beginning with a PROC statement and the
end with a PEND statement. Code a name on the PROC statement. The name for
a TSO/E logon procedure should not be the same as the name of any subsystem.
For a cataloged procedure, PROC and PEND statements are optional. A PROC
statement does not identify a cataloged procedure; the procedure is called by its
member name or alias in the procedure library. However, use the PROC statement
to assign default values for all symbolic parameters in the procedure. Then, if the
calling EXEC statement or a SET statement does not assign a value to or nullify all
the symbolic parameters, the step will not fail.

Examples

For in-stream procedures:

//PAYROLL PROC

/] PEND

//DESK3 ~ PROC A=NEWYORK,F=3350,C=(0LD,CATLG,DELETE)

//ENDING PEND THIS STATEMENT ENDS IN-STREAM PROCEDURE DESK3.
For cataloged procedures:

// PROC UT=3800,FM=J287,DT=LOCAL

4-2 0S/390 V2R10.0 MVS JCL User's Guide

Entering Jobs - Identification

Identification of INCLUDE Group

An INCLUDE statement identifies a member of a PDS or PDSE that contains a set
of JCL statements. This set of JCL statements is called an INCLUDE group. The
system replaces the INCLUDE statement with the statements in the INCLUDE

group.
Example

The INCLUDE group INOUTDD contains:

//INOUT4 DD DSNAME=DS4,UNIT=3380,V0L=SER=111112,
// DISP=(NEW,KEEP),SPACE=(TRK, (5,1,2))
//INOUT5 DD DSNAME=DS5,UNIT=3380,V0L=SER=111113,
// DISP=SHR

The system executes the following job step:

//STEP2 EXEC PGM=TEBCOPY

//SYSPRINT DD SYSOUT=A

//INOUT ~ INCLUDE MEMBER=INOUTDD

//SYSUT3 DD UNIT=SYSDS, SPACE=(TRK, (1))
//SYSUT4 DD UNIT=SYSDS,SPACE=(TRK, (1))

COPYOPER ~ COPY OUTDD=INOUT1
After the system executes the step, the JCL stream appears as follows:

//STEP2 EXEC PGM=TEBCOPY

//SYSPRINT DD SYSOUT=A

//INOUT4 DD DSNAME=DS4,UNIT=3380,V0OL=SER=111112,
/1l DISP=(NEW,KEEP) ,SPACE=(TRK, (5,1,2))
//INOUT5 DD DSNAME=DS5,UNIT=3380,VOL=SER=111113,
// DISP=SHR

//SYSUT3 DD UNIT=SYSDS, SPACE=(TRK, (1))

//SYSUT4 DD UNIT=SYSDS,SPACE=(TRK, (1))

COPYOPER COPY OUTDD=INOUT1

Identification of Account

For Local Execution
In JES initialization parameters, the installation specifies whether or not accounting
information is required in the accounting information parameter on the JOB
statement and/or the ACCT parameter on the EXEC statement. The installation
decides what accounting information is needed and the format for the information.
Examples

//3J28 JOB (12A75,DEPTD58,921)

//XYZ JOB '12A75,DEPTD58,921'
If a subparameter contains special characters:

//GHI JOB (12A75,'DEPT/D58',921)

//JKL JOB '12A75,DEPT/D58,921'

Chapter 4. Entering Jobs - Identification ~ 4-3

Entering Jobs - Identification

If only an account number is coded:

//MNO JOB 12A75

//PQR JOB '12A.75'
If the account number is omitted:
//STU JOB (,DEPTD58,921)

For Remote Execution

The JES2 /*NETACCT statement and the JES3 //*"NETACCT statement supply
accounting information for jobs sent to remote nodes for execution.

Examples

For remote execution in a JES2 system:
/*NETACCT 27FD16
For remote execution in a JES3 system:

//*NETACCT PNAME=FKRUPA,ACCT=27FD16,BLDG=921,DEPT=D58,

//*NETACCT ROOM=2T13,USERID=DDFKPGMR

Identification of Programmer

In JES initialization parameters, the installation specifies if a programmer’s-name
parameter is required on the JOB statement. The installation decides what the
parameter must contain.

Examples

//ABC JOB ,L.GORDON
//DEF JOB ,'L GORDON'
//GHI JOB ,'SP/4 L. GORDON'

//JKL JOB ,'DEPT. 7202'

The USER parameter can be coded on the JOB statement to identify the person
submitting the job.

Example

//MNO JOB ACCT15,'DON PIZZUTO',USER=ID32DBP

4-4 0S/390 V2R10.0 MVS JCL User's Guide

Chapter 5. Entering Jobs - Execution
Table 5-1. Execution Task for Entering Jobs

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
ENTERING JOBS [;| statements JES2 JES3
JOB EXEC Other JCL Statements Statements
Execution
of program PGM
of procedure PROC
when restarting RD SYSCHK DD RESTART on FAILURE and
and with RESTART /*JOBPARM JOURNAL on
checkpointing RD /"MAIN
deadline or DEADLINE on
periodic /I*"MAIN
when dependent I*NET
on other jobs
at remote node XMIT JCL (JESS only) /"ROUTE XEQ
/"ROUTE XEQ
*XEQ
P XMIT

Execution of Program

All programs to be executed must reside in a library, which is a partitioned data set
(PDS) or partitioned data set extended (PDSE). The installation should maintain a
list of programs available in its libraries. Libraries are of three types:

» System libraries: such as SYS1.LINKLIB

* Private libraries: specified in a JOBLIB or STEPLIB DD statement

» Temporary libraries: created in a previous step of the job.

For information about libraries, see LBe.soJ.u:ce_ConitaLoLBmg.tam_LLhta.Ly_od

Execute a program in a system or private library by coding:
//stepname EXEC PGM=program-name
Execute a program in a temporary library by coding:

//stepname EXEC PGM=+.stepname.ddname

//stepname EXEC PGM=x.stepname.procstepname.ddname
Examples
//ST1 EXEC PGM=MYPROG

//DSPROG DD DSNAME=PDS1 (MEMP) ,DISP=SHR
//ST2 EXEC PGM=«.ST1.DSPROG

Execution of Procedure

© Copyright IBM Corp. 1988, 2000

A procedure to be executed must be a:

5-1

Entering Jobs - Execution

* In-stream procedure, located in the input stream before the EXEC statement that
calls it.

» Cataloged procedure, defined in the system procedure library concatenation
SYS1.PROCLIB, an installation-defined procedure library, or a private library.

Execute an in-stream or cataloged procedure by coding:

//stepname EXEC PROC=procedure-name
//stepname EXEC procedure-name

Examples

//ST1 EXEC PROC=PROCA
//STEP9 EXEC PROC=DAILY

Execution when Restarting and with Checkpointing (non-APPC)

In an APPC scheduling environment, job restart is not supported.

Restarting after Abnormal Termination

If a job terminates abnormally, the checkpoint/restart facilities allow you to restart
the job, as follows:

» Automatic step restart, that is, restart by the system from the beginning of a job
step.

» Automatic checkpoint restart, that is, restart by the system from a checkpoint
within a job step.

» Deferred step restart, that is, restart at a later time from the beginning of a job
step.

» Deferred checkpoint restart, that is, restart at a later time from a checkpoint
within a job step.

Restarts are controlled by:

* RD parameters on JOB and EXEC statements. (Restart is not supported for
started tasks; do not use the RD parameter on the JOB statement for a started
task.)

» Checkpoints, if written. Each time a CHKPT macro is executed, a checkpoint is
written.

* The job journal, which is only required for an automatic restart. In a JES3
system, the programmer can code a JOURNAL parameter on the JES3 //*MAIN
statement to control whether JES3 creates a journal for the job.

* In deferred restarts, a RESTART parameter on the JOB statement for the
restarting job and a SYSCHK DD statement to identify the data set containing the
checkpoint written in response to the CHKPT macro. (Restart is not supported for
started tasks; do not use the RESTART parameter on the JOB statement for a
started task.)

Use of Restart

Either form of restart saves having to execute the job from its beginning. If the job
is long, restarting can save a lot of time and computer resources.

For more information about restarting, see I0S/390 DESMS Checkpoint/Restart.

5-2 0S/390 V2R10.0 MVS JCL User’s Guide

Entering Jobs - Execution

Examples

/131 JOB ,'B. MORRISON',RD=RNC

/132 JOB ,'H. MORRILL'
//S1 EXEC PGM=TESTING,RD=R
/152 EXEC PGM=TESTED,RD=NC

Restarting When the System Failed in a JES2 System

JES2 requeues the job for execution if RESTART=Y is in the JES2 /*JOBPARM
statement, and all of the following conditions apply:

* The job was executing when the system failed.
* The operator reinitializes the system with a JES2 warm start.
* The job cannot restart from a step or a checkpoint.

Re-execution is from the beginning of the job.

If the job is registered with automatic restart management, automatic restart
management overrides RESTART=N, and queues the job for re-execution.

For more information about using automatic restart management, see 0S/390 MVS

lSa&nngp.a.S;&pleﬂandeSﬁQMﬂl&Emgnammmg_S;ﬁpleLSeume&Gmdd

Example

/133 JOB ,'J. BUSKIRK'
/*JOBPARM RESTART=Y

Restarting When the System Failed in a JES3 System

If the job was executing when the system failed, the FAILURE parameter on the
JES3 //*MAIN statement tells JES3 how to handle the job. The job can be restarted,
cancelled, held, or printed and then held for restart.

If the job is registered with automatic restart management, automatic restart
management overrides the value of the FAILURE= keyword, and queues the job for
re-execution.

For more information about using automatic restart management, see I0S/390 MV

Setting Up a Sysplex and lQSﬁQO_MMS_EngammLag_Sysplex_Semaes_Ciwdd

Example

/134 JOB ,'G. HILL',RD=NC
//*MAIN FAILURE=RESTART

Deadline or Periodic Execution in a JES3 System

Use the DEADLINE parameter on the JES3 //*MAIN statement to execute your job
by a certain time or periodically every week, month, or year. As the deadline
approaches, JES3 increases the job’s priority until it is executed. The priority is
increased according to the installation-defined algorithm requested in the second
subparameter.

Chapter 5. Entering Jobs - Execution 5-3

Entering Jobs - Execution

Note: The term ’periodically’ means that you submit a job as many times as you
need it to process. For example, if you need a job to run once a month for
every month of the year, you would submit 12 jobs with a date for each
month. You could not submit a job once and have it process 12 times.

Use of Deadline Scheduling

The purpose of deadline scheduling is to help JES3 use available resources best.
For example, if you work first shift and submit a job at the end of the day, you do
not need output until the next morning. Specify 7 a.m. of the next day in the
DEADLINE parameter and assign the job a low priority. JES3 can schedule the job
any time during the night when the resources are available. But, if the job has not
been scheduled by several hours before 7 a.m., JES3 increases its priority. JES3
will increase the job’s priority periodically until it is selected for execution by 7 a.m.

Examples

To execute a job by 7 a.m. on January 20, 1986, code:

//*MAIN DEADLINE=(07600,B,012086)

The syntax changes slightly if you specify a date on or after the year 2000.

To execute a job by 7 a.m. on January 20, 2000, code:

//*MAIN DEADLINE=(0700,B,01/20/2000)

Use of Periodic Scheduling

The purpose of periodic scheduling is to run certain weekly, monthly, or yearly
programs automatically.

Examples

To execute a job by 2 p.m. every Friday, code:

//*MAIN DEADLINE=(1400,A,6,WEEKLY)

Execution when Dependent on Other Jobs in a JES3 System

Use dependent job control (DJC) when jobs must be executed in a specific order.

The group of jobs that depend on each other form a dependent job control (DJC)

network. To indicate to JES3 the relationship of jobs to each other in a DJC

network, code a JES3 //*NET statement in each job. Jobs in a network are of two

types:

* Predecessor jobs, which must be completed before another job.

» Successor jobs, which must not be executed until one or more jobs are
completed.

Using parameters on the //*NET statement, you can make execution of a job
depend on how a predecessor terminated: normally or abnormally. When a
predecessor job completes, a successor job:

» Can have the count of predecessor jobs it is waiting for decreased by one. When
the count reaches zero, the successor job is queued for execution.

» Can be flushed from the system. The successor job and all of its successors are
canceled, printed, and flushed from the system.

5-4 0S/390 V2R10.0 MVS JCL User’s Guide

Entering Jobs - Execution

» Can be retained until the operator releases it. The successor job and all of its
successors are kept from being scheduled. The job is released only when its
immediate predecessor is resubmitted or the operator decreases the predecessor
job number.

External Dependencies

If your job depends on external events, you can specify a count of predecessor jobs

that is one greater than needed. The system will hold the job because the count

cannot reach zero. When the external event occurs, the operator can issue a

*MODIFY,N command to reduce the number so that the job will execute.

Testing a Network

To test a network without executing the programs, substitute the following for each
actual EXEC statement:

//stepname EXEC PGM=IEFBR14
Example 1
To set up a DJC network, first draw a diagram of the dependencies:

JOBA JOBB
JOBC

JOBD JOBE
Give the network a name: XMP1. This is the //*NET statement NETID parameter.

Then list each job and its predecessors and successors:

jobname Predecessors Successors
//*NET NHOLD //*NET RELEASE

JOBA 0 JOBC

JOBB 0 JOBC

JOBC 2 JOBD, JOBE

JOBD 1 none

JOBE 1 none

Finally, code a //*NET statement to appear in each job:

//J0BA JOB ...
//*NET NETID=XMP1,RELEASE=(JOBC)
/751 EXEC ...

//J0BB JOB ...
//*NET NETID=XMP1,RELEASE=(JOBC)
//SA EXEC ...

//J0BC JOB ...
//*NET NETID=XMP1,NHOLD=2,RELEASE=(JOBD,JOBE)
/751 EXEC ...

//J0BD JOB ...

Chapter 5. Entering Jobs - Execution 5-5

Entering Jobs - Execution

//*NET NETID=XMP1,NHOLD=1

//SA EXEC ..

//J0BE JOB ...

//*NET NETID=XMP1,NHOLD=1

/751 EXEC ..

Example 2

This example shows two networks. JOB3 in network XMP3 depends on JOBC in

network XMP2.

XMP2
JOBA

JOBC
JOBD

Jjobname

JOBA

JOBB

JOBC

JOBD

JOB1

JOB2

JOB3

JOBB

XMP3
JOB1
|
<--- JOB2
| |
-—-> JOB3
Predecessors Successors
//*NET NHOLD //*NET RELEASE
0 JOBC
0 JOBC
2 JOB3
1 none
0 JOB2
1 JOB3
2 none

The //*NET statements for each job are:

For JOBA:
For JOBB:
For JOBC:
For JOBD:
For JOB1:
For JOB2:
For JOB3:

//*NET
//*NET
//*NET
//*NET
//*NET
//*NET
//*NET

NETID=XMP2,RELEASE=(JOBC)

NETID=XMP2,RELEASE=(JOBC)
NETID=XMP2,NHOLD=2,NETREL=(XMP3,J0B3) ,RELEASE (JOBD)
NETID=XMP2,NHOLD=1

NETID=XMP3,RELEASE=(J0B2)
NETID=XMP3,NHOLD=1,RELEASE=(JOB3)
NETID=XMP3,NHOLD=2

Execution at Remote Node (non-APPC)

JES control statements and the XMIT statement have no function in an APPC
scheduling environment.

You can enter a job through your system to execute on another system by coding
one of the following statements. The job can be entered through an input reader, an
internal reader, a TSO/E terminal, or an RJE (remote job entry) or RJP (remote job
processing) terminal or work station.

When Entered through a JES2 System:

* And received by a JES2 system, code one of the following:

/*ROUTE XEQ node

/*XEQ node
* And received by a JES2 system or a JESS3 system, code:

5-6 0S/390 V2R10.0 MVS JCL User’s Guide

Entering Jobs - Execution

/*XMIT node
* And received by a VM system with an MVS system running as a guest, code one
of the following:

/*ROUTE XEQ node.vmguestid
/*XEQ node.vmguestid
/*XMIT node.vmguestid

When Entered through a JES3 System:
* And received by a system other than a VM system, code:

//name XMIT DEST=node,DLM=xx
* And received by a VM system with another system running as a guest, code:

//name XMIT DEST=node.vmuserid,DLM=xx
Use of XMIT JCL Statement in a JES3 System

A //F'ROUTE XEQ statement can also be used to transmit records from a JES3
node. Because an XMIT JCL statement allows transmission of records that the
/*ROUTE XEQ statement does not allow, use XMIT JCL statements rather than
/*"ROUTE XEQ statements.

For example, a JOB statement for the receiving node must immediately follow a
/["ROUTE XEQ statement. This requirement means that a /*ROUTE XEQ
statement cannot be used to transmit records beginning with $$ POWER control
statements to a VSE node; however, an XMIT JCL statement can transmit such
records.

Considerations when Submitting a Remote Job

When submitting a job for remote execution, find out the installation-determined
attributes of the executing system. Code these values in your JCL for the job.
The content and format of the JOB statement: Code the executing system’s
parameters on the JOB statements that the executing system will process.
The JES of the executing system: Code your JES control statements and JCL
parameters for the executing system’s JES.
The content of SYS1.PROCLIB in the executing system: Call only
procedures available in the executing system.
The data sets at the executing system: Use only data sets that are available
at the executing system, with the DD parameters that the executing system
requires.
Installation-specific device names: Code only UNIT names used by the
executing system.
The sysout classes at the executing system: Specify the executing system’s
sysout classes that have the attributes you need.
The job classes at the executing system: Specify the executing system’s job
class that has the attributes you need.

Examples

//MYJOB JOB 27D15,'DON SMITH'
//TRANS XMIT DEST=FARSYS
//THEIRJOB JOB (DLD1,2E44),'POK LAB'

Chapter 5. Entering Jobs - Execution ~ 5-7

Entering Jobs - Execution

//*MAIN JOURNAL=YES

//S1 EXEC PROC=RR23,A=3350,

// C=25,DP=0LD

/*

» Job MYJOB is processed by the submitting JES3 location
« XMIT TRANS sends the following job to FARSYS

» THEIRJOB is sent as JOB statement; processed by FARSYS

5-8 0S/390 V2R10.0 MVS JCL User’s Guide

Chapter 6. Entering Jobs - Job Input Control

Table 6-1. Input Control Task for Entering Jobs

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
EQEER'NG JCL Statements JES2 JES3
JOB EXEC Other JCL Statements Statements

Job Input Control

by holding job TYPRUN HOLD, UPDATE

entrance CLASS or CLASS on
/I*MAIN
/I*NET

by holding local /I*PAUSE

input reader

by copying input | TYPRUN

stream (JES2 CLASS

only)

from remote /*SIGNON /*SIGNON

work station /*SIGNOFF /*SIGNOFF

Job Input Control by Holding Job Entrance (Non-APPC)

Certain situations require that execution of a job be delayed until some external
event has occurred. This topic describes job input control methods of achieving
such a delay. However, these methods are not supported in all environments:

» They are not supported in an APPC scheduling environment.

* The TYPRUN parameter is not supported for started tasks. If TYPRUN is

specified, the job will fail.

* The CLASS parameter is not supported for started tasks in a JES2 environment.
For started tasks in a JES3 environment, all class related attributes and functions
are ignored except device fencing, SPOOL partitioning, and track group

allocation. Refer to the
information about class attributes and functions.

ide for more

If a job must wait for an external event before it can execute, use one of the
following to have JES hold the job until the system operator releases it or until an

event occurs:

In a JES2 system

* TYPRUN=HOLD or TYPRUN=JCLHOLD on the JOB statement. The operator

must release the job.

* A JOB statement CLASS that requests a job class defined during JES2

initialization as held. The operator must release the job.

In a JES3 system

e TYPRUN=HOLD or CLASS on the JOB statement or HOLD=YES or CLASS on

the //*"MAIN statement. The operator must release the job.

+ Ajob in a dependent job net; see [Execution when Dependent on Qther .Jobs in

B JES3 System” on page 5-4. JES3 releases the job when the other job(s)

complete execution, or the operator releases the job.

© Copyright IBM Corp. 1988, 2000

Entering Jobs - Job Input Control

* UPDATE on the //*MAIN statement of another job, if this job would use the
procedure library being updated or any library concatenated to it. JES3 releases
the job when the updating job completes execution.

Use of Job Holding

You may need to delay execution of a job for several reasons. For example:
» If one job is updating a data set that another job must use.

 If the resources a job requires may not be available until an external event
occurs.

Note: You cannot depend on job priorities to control the order in which jobs
execute. The priority specified in the JOB statement PRTY parameter or in
the JES2 /*PRIORITY statement affects the selection order. It does not
guarantee that a job with a higher priority will complete execution before a
job with a lower priority is started.

Examples
//31 JOB ,'J. COLE',TYPRUN=HOLD

//d2 JOB ACCT1734,'T. CURATOLO',CLASS=H

//*MAIN HOLD=YES
//*MAIN UPDATE=DS3

Job Input Control by Holding Local Input Reader (Non-APPC)

The //**PAUSE statement is not supported in an APPC scheduling environment. If
you code //**PAUSE, the system will ignore it, and it will appear as a comment in
the job listing.

In a JES3 system, use a //**PAUSE statement to halt an input reader. JES3 issues
a message and waits for the operator to issue a *START command or for a remote
work station with console level 15 to send a start message.

Example

//**PAUSE
//FIRST JOB ,'D. SCHOFER'

Job Input Control by Copying Input Stream (Non-APPC)

This topic describes methods to copy an input job without executing any steps.
These methods are applicable only in a JES2 environment. They are not supported
in an APPC scheduling environment, and are not supported for started tasks.

In a JES2 system, code one of the following on the JOB statement to copy an input
job without executing any steps:

* TYPRUN=COPY

* A CLASS job class defined during JES2 initialization as containing jobs to be
copied without execution.

While copying the input stream, JES2 scans the JCL for syntax errors.

6-2 0S/390 V2R10.0 MVS JCL User’s Guide

Entering Jobs - Job Input Control

In both cases, JES2 places the copy of the input stream in a sysout data set. The
sysout data set is in the class specified in the JOB statement MSGCLASS
parameter. Pick the MSGCLASS class to control how the copied input stream is to
be processed, as follows:

* By JES2 or by an external writer.

* Scheduled for immediate output or held because the message class is held. If
held, the sysout data set is available to the TSO/E OUTPUT command.

Examples
//CPYJ1 JOB 1589D10,'I. BUTLER',TYPRUN=COPY

//CPYJ2 JOB ,'D. BALLARD',CLASS=P

Job Input Control from Remote Work Station

JES2 Remote Job Entry

JES2 remote job entry (RJE) allows a remote work station to submit a job to a
distant system and have the job processed by the system’s JES2. Your installation’s
security product can control RJE stations. The output can be retained at the host
system, sent to the work station, or sent to another location. JES2 processes a
remote job as if it had been submitted locally. The remote station becomes a logical
extension of the computer system that processes its jobs.

JES2 supports two ways of communicating with RJE remote stations:

* Through systems network architecture synchronous data link control
(SNA/SDLC) protocol. SNA stations gain access to JES2 through VTAM.

* Through binary synchronous communication (BSC) protocol. Communication
between the local processor and a BSC RJE station uses a JES2 facility called
multi-leaving. Multi-leaving allows transmission of multiple print and punch
streams at the same time and allows JES2 to receive multiple console messages
and input streams.

For more information, see remote job entry in [0S/390 JES2 Initialization and Tuning
Guida and 0S/390 IBM Communications Server: SNA Programming.

JES2 expects the remote station to be under the control of a remote operator. The
RJE stations can consist of two types of devices:

* Remote terminal, which does not have a processor. A remote terminal, for
example a 2780 or 2770, can be used to enter jobs into and receive data from
JES2.

* Remote work station, which has a processor. A processor, for example a
System/370 or System/390, executes a JES2-generated program that allows the
processor to send jobs to and receive data from JES2. The remote work station
may also include printers, card readers and punches, and a console.

Remote Job Entry Stations

During JES2 initialization, installations can configure remote lines as dedicated or
nondedicated. For nondedicated remote lines, use the following to notify JES2 that
you wish to begin and end a remote job stream processing session:

» For SNA remote work stations: the LOGON command to begin and either the
LOGOFF command or the JES2 /*SIGNOFF control statement to end.

Chapter 6. Entering Jobs - Job Input Control ~ 6-3

Entering Jobs - Job Input Control

» For BSC remote work stations: the JES2 /*SIGNON control statement to begin
and the JES2 /*SIGNOFF control statement to end.

For a discussion of the LOGON and LOGOFF commands, refer to [05/390 JES2
lnitialization and Tuning Reference and [0S/390 IBM Communications Server: SNA

Brogramming.
JES3 Remote Job Processing

JES3 remote job processing (RJP) allows a remote work station to submit a job
through a data link to a distant global processor and have the job processed by the
system’s JES3. The output can be retained at the host system, sent to the work
station, or sent to another location. JES3 processes a remote job as if it had been
submitted locally.

Devices attached to a processor by channels are local devices; devices attached
to a processor by a data link are remote devices.

JESS3 supports two ways of communicating with RJP remote devices:

* Through systems network architecture synchronous data link control
(SNA/SDLC) protocol.

* Through binary synchronous communications (BSC) protocol.
Remote Work Stations

During JESS initialization, installations can configure remote lines as dedicated or
nondedicated. For nondedicated remote lines, use the following to notify JES3 that
you wish to begin and end a remote job stream processing session:

* For SNA remote work stations: the LOGON command to begin and either the
LOGOFF command or the JES3 /*SIGNOFF control statement to end.

* For BSC remote work stations: the JES3 /*SIGNON control statement to begin
and the JES3 /*SIGNOFF control statement to end.

For a discussion of the LOGON and LOGOFF commands, refer to [0S/390 JFS3
Initialization and Tuning Referencd and [QS/390 IBM Communications Server: SNA

Programming.

6-4 0S/390 V2R10.0 MVS JCL User’s Guide

Chapter 7. Entering Jobs - Communication

Table 7-1. Communication Task for Entering Jobs

TASKS FOR
ENTERING JOBS

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2 JES3
JOB EXEC Other JCL Statements Statements
Communication
from JCL to /*$command /[**command
system COMMAND
Command
from JCL to /*MESSAGE /[*OPERATOR
operator
from JCL to Comment field Comment field /[*comment, also Comment field
programmer unless no comment field on all on
parameter field statements but null //"ENDPROCESS
and //*PAUSE
from JCL to PARM
program
from system to WARNING on FETCH on
operator BYTES, CARDS, /I*MAIN
LINES, and WARNING on
PAGES BYTES, CARDS,
LINES, and
PAGES on
/"MAIN
from system to NOTIFY NOTIFY on /*NOTIFY ACMAIN on
userid -of job OUTPUT JCL /I*MAIN with
completion -of statement JOB NOTIFY
print completion
from TSO/E USER on
userid to system /I*MAIN
from functional PIMSG on OUTPUT
subsystem to JCL
programmer
through job log MSGCLASS JESDS on OUTPUT | NOLOG on
MSGLEVEL log in JCL /*JOBPARM
JOB JES2
accounting
information

Communication from JCL to System (Non-APPC)

The statements described in this section are not supported in an APPC scheduling

environment.

Use the following to communicate from your JCL to the system:

* In a JES2 system,
— The JCL COMMAND statement to enter any MVS and JES commands that
can be issued from the operator’s console

— The JCL command statement to enter system operator commands

— The JES2 /*$command statement to enter JES2 commands.

© Copyright IBM Corp. 1988, 2000

7-1

Entering Jobs - Communication

* In a JESS3 system,
— The JCL COMMAND statement to enter any MVS and JES commands that
can be issued from the operator’s console
— The JCL command statement to enter system operator commands
— The JES3 //**command statement to enter JES3 commands.

The system executes any in-stream command as soon as it is read. Therefore, the
command will not be synchronized with the execution of any job or step.

Examples

In a JES2 system:
/*$S13-5

// COMMAND 'CANCEL MYJOB,DUMP'

In a JES3 system:
//**START

Communication from JCL to Operator (Non-APPC)

Use a /"MESSAGE control statement in a JES2 system or a /*OPERATOR control
statement in a JES3 system to send a message to the operator when JES reads
the job from the input stream. Note that the message is not synchronized with the
execution of any job or step.

Examples

In a JES2 system:
/*MESSAGE JOB J67 IS HELD. CALL X65335 BEFORE RELEASING J67.

In a JES3 system:
//*0PERATOR JOB J67 IS HELD. CALL X65335 BEFORE RELEASING J67.

Communication from JCL to Programmer

To communicate from your JCL to programmers, use comments fields or JCL
/I*comment statements. The comments appear in the job log output listing if the
JOB statement MSGLEVEL parameter requests that the statements be printed.

Use comments primarily to document your job and its resource requirements.
Examples

//* JOB J67 IS HELD UNTIL THE OPERATOR RELEASES IT.
//* THE OPERATOR SHOULD RELEASE J67 WHEN DISK 398
//* IS AVAILABLE.

Communication from JCL to Program

A processing program can require information that can vary from execution to
execution. For example, the assembler and the linkage editor require that the
programmer supply options and module attributes at execution. To provide
information to a program, code the PARM parameter on the EXEC statement that
executes the program.

7-2 0S/390 V2R10.0 MVS JCL User's Guide

Entering Jobs - Communication

To use the information, the processing program must contain instructions to retrieve
the information. Retrieval of the PARM information is detailed in

Programming: Assembler Services Guidd.

Examples

//FIRST EXEC PGM=IEV90,PARM=(0BJECT,NODECK,'LINECOUNT=50")
//LATER EXEC PGM=HEWL,PARM="'XREF,LIST,LET'

PARM Values for IBM-Supplied Programs

Some IBM-supplied programs allow you to select options from a set of alternatives.
The PARM values are listed in the publication for the program. For many
IBM-supplied programs, default values can be assigned to PARM values during
system initialization. That is, the installation can select an alternative or assign a
fixed value. The system uses this default unless you specify another value in the
PARM parameter when you execute the IBM-supplied program.

The installation should maintain a list of default values assigned during system
initialization.

Communication from System to Operator

The system sends to the operator console messages deemed to be needed by the
operator.

Messages during Volume Mounting

In a JES3 system, the programmer can control the fetch messages that JES3
issues to the operator console for disk and tape volumes for a job. Code the
FETCH parameter of the JES3 //*MAIN statement to request one of the following:

» All fetch messages for all volumes to be mounted on JES3 setup devices.

* Fetch messages for volumes specified in DD statements that are named in the
SETUP parameter on the JES3 //*MAIN statement.

* Fetch messages for volumes on named DD statements.
* No fetch messages.
* No fetch messages for volumes on named DD statements.

Regardless of the FETCH parameter, JES3 sends all the fetch messages to the job
log.

Examples

//*MAIN FETCH=ALL

//*MAIN FETCH=NONE

//*MAIN FETCH=SETUP

//*MAIN FETCH=(DDA,INDS,DD7)
//*MAIN FETCH=/MYDS

Messages When Job Exceeds Output Limit

The system sends the operator a warning message when the output from a job
exceeds a specified limit. The way you request that the system send a warning
message when the limit is exceeded depends on the environment in which your job
is executing.

Chapter 7. Entering Jobs - Communication ~ 7-3

Entering Jobs - Communication

Messages When Output Limit Exceeded in an APPC Scheduling

Environment
In an APPC scheduling environment, the BYTES, CARDS, LINES, and PAGES

parameters of the JOB statement limit the job’s output. When you code the
WARNING subparameter with any of these parameters, the system sends the
operator a warning message when the output exceeds the limit you have specified.

If you do not code an output limit on the JOB statement BYTES, CARDS, LINES, or
PAGES parameter, the system sends a warning message to the operator when a
job’s output exceeds the installation default limit specified at JES initialization.

Messages When Output Limit Exceeded in a Non-APPC

Scheduling Environment
In a non-APPC scheduling environment, you can request that the system send a

warning message when the limit is exceeded by using the JOB statement

parameters and installation defaults described in Messages When Qutput Limi
Exceeded in an APPC Scheduling Environment. In addition, you can code a

BYTES, CARDS, LINES, or PAGES parameter on a JES2 /*JOBPARM statement or
on a JES3 //*MAIN statement to limit output for a job.

When you code the WARNING subparameter on the /*MAIN statement, the system
sends a warning message to the operator when a job’s output exceeds the limit you
have specified.

When you code an output limit on the /*JOBPARM statement, the system sends a
warning message to the operator when:

* The job’s output exceeds the limit you have specified, and

« The warning option has been specified at JES2 initialization as the installation
default.

Defaults and Multiple Messages

If you do not code an output limit on the JOB statement, the system uses the limit
coded on the //*MAIN statement or the /*JOBPARM statement. If you do not code a
/I*"MAIN or a /*JOBPARM statement, the system uses the installation default limit
specified at JES initialization.

If you code multiple /*MAIN statements specifying output limits for a job, or you
code a limit and WARNING subparameter on the JOB statement as well as the
/I"MAIN statement, the operator will receive multiple warning messages.

Use of Warning Messages
One use for the output limit is during program testing. The warning message tells

the operator that the program is producing more output than expected. Perhaps the
program is in an endless loop that contains instructions sending records to a printer
or punch. The operator can halt the program’s execution.

Examples

The following examples illustrate the use of the JCL JOB statement, in either an
APPC or non-APPC scheduling environment, to warn the operator when the output
for a job has exceeded a limit in any JES system:

//J0B1 JOB ACCTO1,'D. PIKE',BYTES=(50,WARNING)

//J0B2 JOB 1542 ,RWALLIN,CARDS=(120,WARNING)

7-4 0S/390 V2R10.0 MVS JCL User's Guide

Entering Jobs - Communication

//J0B3 JOB ,ZOBES,LINES=(200,WARNING)

//J0B4 JOB ACCT27,'S M SHAY',PAGES=(,WARNING)

The following examples illustrate the use of the JES3 //*MAIN statement in a
non-APPC scheduling environment to warn the operator when output for a job has
exceeded a limit.

//*MAIN BYTES=(50,WARNING)
//*MAIN CARDS=(120,WARNING)
//*MAIN LINES=(200,WARNING)
//*MAIN PAGES=(,WARNING)

Communication from System to Userid

The NOTIFY parameter allows the system to notify a user of job or print completion.

Job Completion

When you execute a background or batch job, you can ask the system to notify
your time sharing userid or another userid when the job completes. Under TSO/E, a
background job is one that is entered from a terminal by a SUBMIT command or by
executing a step to run TSO/E in the background. For more information, see

. A batch job is one that is entered through an

input stream.

To request automatic notification, code in your JCL for the job one of the following:

* In a TSO/E background job in a JES2 or JES3 system, specify a userid (and
optionally a node) in the JOB statement NOTIFY parameter. If a node is
specified, the userid must be attached to that node. If a node is not specified, the
userid must be attached to the node from which the job originated.

* In a TSO/E background job or a batch job in a JES2 system, specify a userid in
a JES2 /*NOTIFY statement and, if the userid is attached to another node, a
node.

* In a batch job in a JES3 system, specify a userid in the JOB statement NOTIFY
parameter and the processor for the userid in the ACMAIN parameter of the
JES3 //*MAIN statement.

Examples

In a JES2 or JES3 system:
//MYJOB JOB ,'I. BUTLER',NOTIFY=DN62PSS
//MYJOB JOB ,'I. BUTLER',NOTIFY=FARNODE.DN62PSS

In a JES2 system:
/*NOTIFY DN62PSS4
/*NOTIFY FARNODE.DN62PSS

In a JES3 system:
//MYJOB JOB ,'I. BUTLER',NOTIFY=DN62PSS
//*MAIN ACMAIN=2

Print Completion

You can receive notification that your output has completed printing by coding the
NOTIFY parameter on the OUTPUT JCL statement. NOTIFY allows you to send the
print completion message to up to 4 users. The message identifies the output that
has completed printing, and indicates whether the printing was successful.

Chapter 7. Entering Jobs - Communication ~ 7-5

Entering Jobs - Communication

Example

//0UT1 OUTPUT NOTIFY=(PLPSC.ARNOLD,SMYTHE)

Communication from Time Sharing Userid to a JES3 System

In a JES3 system, the USER parameter on the JES3 //*MAIN statement identifies
the job with a TSO/E user. The job can be submitted through any input source,
other than the internal reader, provided the installation does not force job naming
conventions. USER allows the TSO/E userid to:

* Issue a TSO/E OUTPUT command to access sysout data sets from the job.

* Inquire about the status of the job or cancel it.

Example

//*MAIN USER=J63ET91

Communication from Functional Subsystem to Programmer

The programmer can control whether a functional subsystem prints its messages in
the output listing following the sysout data set it creates. For this control, code the
PIMSG parameter on the OUTPUT JCL statement.

Example

//0DS3 OUTPUT PAGEDEF=IMAG4,PIMSG=YES

Communication through Job Log

The system produces three system-managed data sets about a job. The system
managed-data sets consist of:

* The job log, which is a record of job-related information for the programmer. The
job log consists of:
— The job control statements in the input stream, that is, the JCL statements

and JES2 or JES3 statements.

— Cataloged procedure statements for any procedure a job step calls.
— Messages about job control statements.

» The job’s hard-copy log, which is a record of all message traffic for the job to and
from the operator console. These messages describe allocation of devices and

volumes, execution and termination of job steps and the job, and disposition of
data sets.

» System messages for the job.

The output class for the job log is set by the MSGCLASS parameter on the JOB
statement or, if a job-level OUTPUT JCL statement contains a JESDS parameter,
by the class that applies to the OUTPUT JCL statement. (Note: The MSGCLASS
parameter has no effect in an APPC scheduling environment. If you code
MSGCLASS, the system will check it for syntax and ignore it.) If no class is
specified, the system uses the default class based on the input source of the job;
the default is specified at JES initialization.

Printing of the job log is controlled by the following parameters:
* MSGLEVEL parameter of JOB statement.
* All parameters on an OUTPUT JCL statement that contains a JESDS parameter.

7-6 0S/390 V2R10.0 MVS JCL User’s Guide

Entering Jobs - Communication

To prevent the job log from being printed, code one of the following:
* log subparameter in the JOB statement JES2 accounting information parameter
* NOLOG parameter on the JES2 /*JOBPARM statement

Example 1

//J0BC JOB ,'V. ST PIERRE',MSGLEVEL=(1,1)
//SMDS OUTPUT JESDS=ALL,CLASS=D,COPIES=2,BURST=YES,
Example 2

//JOBF JOB (55555s5N)

/*JOBPARM NOLOG
Example 3

//31 JOB 1518, 'SECT. E98'

//01 OUTPUT JESDS=ALL

//02 OUTPUT JESDS=ALL,WRITER=JCLOGGER
//S1 EXEC ~ PGM=REPORT

This example requests that the three system-managed data sets be printed
normally and that a copy of each be routed to an external writer named
JCLOGGER.

//MYEX JOB , 'DEPT. 28H',MSGCLASS=A

//SYSPROG OUTPUT JESDS=ALL,GROUPID=SYSPROG

//0PER OUTPUT JESDS=ALL,GROUPID=0PER

//USER OUTPUT JESDS=ALL,GROUPID=USER,DEFAULT=YES
//REMOTE ~ OUTPUT JESDS=ALL,DEST=REMOTE,DEFAULT=YES
//51 EXEC PGM=REPORT

//SYSPRINT DD SYSOUT=A

This example creates four different output groups. Group SYSPROG will contain a
copy of all three system-managed data sets. Group OPER will also contain a copy
of all three system-managed data sets. Group USER will contain a copy of all three
system-managed data sets plus a copy of the data set for DD statement
SYSPRINT: group USER is processed locally.

The system creates a fourth group with a system-generated group name. This
group contains a copy of the three system-managed data sets plus a copy of the
data set for DD statement SYSPRINT; this group is processed remotely at
destination REMOTE.

Printing Job Log and Sysout Data Sets Together

To print the job log and the sysout data sets from a job on the same output listing,
place them in the same output class. Specify one of the following:

 SYSOUT=* on the DD statement.
e CLASS=* on the OUTPUT JCL statement.

* The same output class in the DD SYSOUT parameter or OUTPUT JCL CLASS
parameter as specified in the JOB MSGCLASS parameter.

Or, use an OUTPUT JCL statement with a JESDS parameter to control printing of

the system-managed data sets. Note that care is needed in specifying the OUTPUT
JESDS statement and the sysout DD statement because:

Chapter 7. Entering Jobs - Communication ~ 7-7

Entering Jobs - Communication

* Any values on the sysout DD statement override those on the OUTPUT JCL
statement.

* The values on the OUTPUT JCL statement always apply to the system-managed
data sets.

Therefore, the output parameters used to process the system-managed output data
sets and sysout data sets can be different, even when the data sets all reference
the same OUTPUT JCL statement. For example, if the sysout DD statement
specifies one output class and the JESDS statement specifies another output class,
the sysout data set and system-managed data sets are placed in different
subgroups and each is printed in its own output class.

Example 1

//31 JOB DF16,MSGCLASS=B
//S1 EXEC PGM=ABC
//0UT DD SYSOUT=+

//J2 JOB ,'V. FOTI',MSGCLASS=C
//S1 EXEC PGM=DEF
//0UT DD SYSOUT=C

//33 JOB ,'G. ROY',MSGCLASS=D
//S1 EXEC PGM=GHI

//0T1 OUTPUT CLASS=+

//DS1 DD SYSOUT=(,),0UTPUT=*.0T1

//34 JOB ,'T. POLAKOWSKI',MSGCLASS=E
//S1 EXEC PGM=JKL

//0T1 OUTPUT DEFAULT=YES,CLASS=E

//DS1 DD SYSOUT=(,)

Example 2

//SYSDS JOB ,'J. HIGGINS', MSGCLASS=A

//0UT1 OUTPUT JESDS=ALL,GROUPID=JOINT,DEFAULT=YES
//STEP1 EXEC PGM=REPORT

//REQPRT DD SYSOUT=A

This example shows how to combine sysout data sets and system-managed output

data sets in one output group. The system prints sysout data set REQPRT and all
three system-managed data sets in the same group.

7-8 0S/390 V2R10.0 MVS JCL User’s Guide

Chapter 8.

Entering Jobs - Protection

Table 8-1. Protection Task for Entering Jobs

TASKS FOR
ENTERING JOBS

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements

JOB EXEC Other JCL

JES2
Statements

JES3
Statements

Protection

through RACF

GROUP
PASSWORD
SECLABEL
USER

Protection through RACF

The OS/390 Security Server, which includes RACF, is a program product that helps
installations achieve data security by controlling the access to data sets and the
security level for the execution of jobs. For more information about RACF, see

0S/390 SecureWay Security Server RACF Introduction.

For RACF protection, the user must supply a userid and a password to RACF. The
group name and security label for the job are optional. Depending on the
installation’s RACF options, the group name and security label can be supplied in
the USER, PASSWORD, GROUP, and SECLABEL parameters on the JOB
statement. For jobs submitted by a TSO/E user, these items can be obtained from
the TSO/E logon.

The security environment of started tasks is defined using a RACF class, not
through the USER, PASSWORD, GROUP, and SECLABEL parameters. If these
parameters are specified, the started task will fail.

In any RACF installation, the USER and the PASSWORD are required, and the
GROUP and the SECLABEL are optional parameters on JOB statements for the
following:

» Batch jobs submitted through an input stream, such as a card reader:
— if the job requires access to RACF-protected resources, or
— if the installation requires that all jobs have RACF identification.

» Jobs submitted by one RACF-defined user for another user. In this case, the JOB
statement must specify the other user’s userid and might need a password. The
group id and security label are optional.

» Jobs that execute at another network node that uses RACF protection.
Examples

//MYJOB JOB D58,SUE,USER=D58STW,PASSWORD=41168X
//YOURS JOB D58,DON,USER=DSCHOF,PASSWORD=404632,GROUP=D58DISK
//RAJOB JOB D58,ALE,USER=D59AFG,PASSWORD=3316YX,SECLABEL=CONF

© Copyright IBM Corp. 1988, 2000 8-1

Entering Jobs - Protection

8-2 0S/390 V2R10.0 MVS JCL User’s Guide

Chapter 9. Entering Jobs - Resource Control

Table 9-1. Resource Control Task for Entering Jobs

TASKS FOR
ENTERING JOBS

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2 JES3
JOB EXEC Other JCL Statements Statements
Resource Control
of program library JOBLIB DD
STEPLIB DD
DD defining
member of PDS
or PDSE
of procedure JCLLIB PROCLIB on PROC and
library /*JOBPARM UPDATE on
/"MAIN
of INCLUDE JCLLIB PROCLIB on PROC and
group /*JOBPARM UPDATE on
/*MAIN
of address space |REGION REGION LREGION on
ADDRSPC ADDRSPC /*"MAIN
of processor SCHENV SYSAFF on SYSTEM on
/*JOBPARM /*MAIN
of spool partition SPART and
TRKGRPS on
/*MAIN

Resource Control of Program Library

To be executed, a program must be in one of the following libraries:

System library
Private library
Temporary library

A library is a partitioned data set (PDS) or a partitioned data set extended (PDSE)
on direct access storage. PDSs and PDSEs are divided into partitions, called
members. In a library, each member contains a program or part of a program.

For details on creating and deleting members in a PDS or PDSE, see las/zad

DESMS: Using Data Setd.

System Library

Unless a job or step specifies a private library, the system searches for a program

in the system libraries when you code:
//stepname EXEC PGM=program-name

The system looks in the libraries for a member with a name or alias that is the
same as the specified program-name. The most used system library is
SYS1.LINKLIB, which contains executable programs that have been processed by

the linkage editor.

© Copyright IBM Corp. 1988, 2000

9-1

Entering Jobs - Resource Control

If an earlier DD statement in the job defines the program as a member of a system
library, refer to that DD statement to execute the program:

//stepname EXEC PGM=x.stepname.ddname

Private Library

Each executable, user-written program is a member of a private library. To tell the
system that a program is in a private library, code a DD statement defining that
library in one of the following ways:

» To define a private library to be used throughout a job, place a DD statement
with the ddname JOBLIB after the JOB statement and before the first EXEC
statement in the job.

* To define a library to be used in only one step, place a DD statement with the
ddname STEPLIB in the step.

To execute a program from a private library, code:
//stepname EXEC PGM=program-name

When you code JOBLIB or STEPLIB, the system searches for the program to be
executed in the library defined by the JOBLIB or STEPLIB DD statement before
searching in the system libraries.

If an earlier DD statement in the job defines the program as a member of a private
library, refer to that DD statement to execute the program:

//stepname EXEC PGM=+.stepname.ddname
Use of Private Libraries
Private libraries are particularly useful for programs used too seldom to be needed
in a system library. For example, programs that prepare quarterly sales tax reports
are good candidates for a private library.
Creating a Private Library
To create a private library, code a JOBLIB or STEPLIB DD statement and add one
or more members to it in the job. The JOBLIB library is more convenient than the
STEPLIB, because the JOBLIB is available to every step in the job in order to add
members or to execute already added members. The STEPLIB DD must be passed
or redefined in each step that uses it.

Adding Members to a Private Library

To add members to a library, code a DD statement that defines the library and
names the member to be added to the library.

Example of Creating and Adding to a Private Library

//EG JOB 5328, '"MARGARET NONNSEN'

//JOBLIB DD DSNAME=GROUPLIB,DISP=(NEW,CATLG),
// UNIT=3350,V0L=SER=727104,

// SPACE=(CYL, (50,3,4))

//STEP1 EXEC PGM=FIND

//ADDPGMD DD DSNAME=GROUPLIB(RATE),DISP=MOD,
// VOL=REF=+.JOBLIB

//STEP2 ~ EXEC PGM=RATE

9-2 0S/390 V2R10.0 MVS JCL User’s Guide

Entering Jobs - Resource Control

In this example, the JOBLIB DD statement creates a library named GROUPLIB.
Program FIND in STEP1 adds the program RATE to the library. STEP2 calls the
program RATE.

In STEP1, the system looks for the program named FIND in SYS1.LINKLIB,
because the private library created on the JOBLIB DD statement does not actually
exist until a member is added to it. In STEP2, the system looks for the program
named RATE first in the JOBLIB library.

Retrieving an Existing Private Library

If several programs for a job are in the same private library, identify the library on a
JOBLIB DD statement. The library is available in every step of the job for which you
do not code a STEPLIB DD statement.

To make a library available to a single step, identify the library on a STEPLIB DD
statement. The STEPLIB library is available only to the step that contains the
STEPLIB DD statement, unless you pass the library and retrieve it in a subsequent
step.

The system searches for a program in the private library you identify. If a job
contains a JOBLIB DD statement and a step contains a STEPLIB DD statement,
the system searches for the step’s program first in the STEPLIB library and then in
the system libraries. The system ignores the JOBLIB library for that step.

For a step in a job using a JOBLIB library, if you want the system libraries searched
rather than the JOBLIB, code a STEPLIB DD statement that identifies a system
library:

//STEPLIB DD DSNAME=SYS1.LINKLIB,DISP=SHR

Example of Retrieving Job and Step Libraries

//MYJOB JOB MSGLEVEL=1

//JOBLIB DD DSNAME=LIB5.GRP4,DISP=SHR

//STEP1 EXEC PGM=FIND

//STEP2 EXEC PGM=GATHER

//STEPLIB DD DSNAME=ACCOUNTS,DISP=(SHR,KEEP),

!/ UNIT=3350,V0L=SER=727104

* In STEP1, the system searches the library named LIB5.GRP4, defined on the
JOBLIB DD statement, for the program named FIND.

* In STEP2, the system searches the library named ACCOUNTS, defined on the
STEPLIB DD statement, for the program named GATHER.

Concatenating Private Libraries

If a job uses programs from several libraries, you can concatenate these libraries to
a JOBLIB DD statement or a STEPLIB DD statement; all the libraries being
concatenated must be existing libraries. Omit the ddname from all the DD
statements for the libraries, except the first.

The system searches the libraries for the program in the same order as the DD
statements.

Example of Concatenated Libraries

Chapter 9. Entering Jobs - Resource Control ~ 9-3

Entering Jobs - Resource Control
//JOBLIB DD DSNAME=D58.L1B12,DISP=(SHR,PASS)

// DD DSNAME=D90.BROWN,DISP=(SHR,PASS),
// UNIT=3330,V0L=SER=411731
// DD DSNAME=A03.EDUC,DISP=(SHR,PASS)

Temporary Library

Temporary libraries are partitioned data sets created to store a program until it is
used in a later step of the same job. A temporary library is created and deleted
within a job.

When testing a newly written program, a temporary library is particularly useful for
storing the load module from the linkage editor until it is executed by a later job
step. Because the module will not be needed by other jobs until it is fully tested, it
should not be stored in a system library.

While the system assigns the module a name in the temporary library, the name
cannot be predicted. Therefore, use the PGM parameter to identify the program by
location rather than by name. Code a backward reference to the DD statement that
defines the temporary library:

//stepname EXEC PGM=x.stepname.ddname
Creating a Temporary Library

In the step that produces the program, code a DD statement that creates a
partitioned data set and place the program in it. A later step can then retrieve this
program. Alternatively, you can use the virtual 1/O (VIO) facilities to define a

temporary library. See FAllacation of Virtual I/Q” on page 15-46 for details.

Example
//STEP2 EXEC PGM=IEWL

//SYSLMOD DD DSNAME=&&PARTDS (PROG) ,UNIT=3350,
// DISP=(NEW,PASS),SPACE=(1024, (50,20,1))
//STEP3 EXEC PGM=*.STEP2.SYSLMOD

STEP2 calls the program IEWL, which link edits object modules to form a load
module that can be executed. STEP2 places the module in the library defined in the
SYSLMOD DD statement.

STEPS3 calls the program by naming the step that created the library and the DD
statement that defines the program as a member of a library. If STEP2 had called a
procedure and the DD statement named SYSLMOD was included in PROCSTEP3
of the procedure, you would code PGM=*.STEP2.PROCSTEP3.SYSLMOD.

Resource Control of Procedure Library

Procedure libraries are partitioned data sets consisting of members that contain
procedures or INCLUDE groups. For information about INCLUDE groups, see

To call and execute a procedure cataloged in a library, code:
//stepname EXEC PROC=procedure-name

The name of the cataloged procedure is its member name or alias in the library.

9-4 0S/390 V2R10.0 MVS JCL User’s Guide

Entering Jobs - Resource Control

Retrieving a Procedure Library

If a job does not specify a procedure library, the system retrieves all cataloged
procedures called by EXEC statements from the procedure libraries defined by the
installation for the job’s job class.

If a job’s cataloged procedures are contained in another procedure library, use the
following parameters to direct the system to that library. The parameters must
specify procedure libraries defined during JES initialization.

* Code a JCLLIB statement to tell the system to search system procedure libraries,
installation-defined procedure libraries, or private libraries. The system searches
the libraries in the order in which they are specified on JCLLIB.

* In a JES2 system, code a PROCLIB parameter on the JES2 /*JOBPARM
statement.

* In a JES3 system, code a PROC parameter on the JES3 //*MAIN statement.

Updating a Procedure Library

To add a procedure to an installation-defined procedure library or to modify
permanently a procedure in a library, use the IEBUPDTE utility program. If
modifying, tell the system operator to delay any jobs that would use the procedure
during modification.

In a JES3 system, you can specify UPDATE on the JES3 //*MAIN statement to
update a procedure library. This parameter causes all jobs using the identified data
set and any concatenated data sets to be held until the update is complete.

Examples

//J0B1 JOB
//LIBS ~ JCLLIB ORDER=(MYPRI.PROCS.JCL,SYS1.PROCLIB,INSTALL.JCL.PROCS)
//STEP1 EXEC PROC=STAT

In a JES2 system:

//J0B87 JOB ,'S. WENDALL'
/*JOBPARM PROCLIB=PROC15
//51 EXEC PROC=ALEG
//INDS DD *

(éata)
/% '

In a JES3 system:
//J0B87 JOB ,'S. WENDALL'
//*MAIN PROC=15
/151 EXEC PROC=ALEG
//INDS DD *

(éata)
/% '

In these examples, the system obtains the procedure ALEG from the procedure
library PROC15.

Chapter 9. Entering Jobs - Resource Control ~ 9-5

Entering Jobs - Resource Control

Resource Control of INCLUDE Group

An INCLUDE group is a member of a system library, installation-defined library, or
private library.

To imbed an INCLUDE group in the JCL stream at the point of the INCLUDE
statement, code:

//name INCLUDE MEMBER=member-name

The system replaces the INCLUDE statement with the JCL statements contained in
the INCLUDE group.

Retrieving an INCLUDE Group

To tell the system to search system libraries, installation-defined libraries, or private
libraries for the member named on an INCLUDE statement, code:

//name JCLLIB ORDER=1ibrary-namel,library-name2

Example

//IDLIB JCLLIB ORDER=(PRILIB.INCL.ONE,PRILIB.INC.TWO)
//INCGRP INCLUDE MEMBER=QUTSTMTS

Resource Control of Address Space

Types of Storage

In MVS, the storage available for a program is virtual storage or central storage
(also called real storage):

» Virtual storage is addressable space that appears to the user as central (real)
storage. Instructions and data are mapped from virtual storage into central
storage locations, where they are executed.

» Central (real) storage is the storage from which the processor can directly
obtain instructions and data and to which it can directly return results.

Virtual Storage

The virtual storage address space is 2 gigabytes. The address space contains the
commonly addressable system storage, the nucleus, and the private address space,
which includes the user’s region.

When a program is selected, the system brings it into virtual storage and divides it
into pages of 4K bytes. The system transfers the pages of a program into central
(real) storage for execution and out to auxiliary storage when not needed. Paging is
done automatically; to the programmer, the entire program appears to occupy
contiguous space in central storage at all times. Actually, not all pages of a program
are necessarily in central storage at one time. Also, the pages that are in central
storage do not necessarily occupy contiguous space.

Central (Real) Storage
Certain programs must have all their pages in contiguous central (real) storage
while they are executing. They cannot be paged. These programs must be put into

an area of virtual storage called the nonpageable dynamic area, whose virtual
addresses are identical to real addresses.

9-6 0S/390 V2R10.0 MVS JCL User’s Guide

Entering Jobs - Resource Control

Such programs include:
* Programs that modify a channel program while it is active.
* Programs that are highly dependent on time.

Such programs are the only ones for which you should request central storage. To
request central storage, code ADDRSPC=REAL on the JOB or EXEC statement
and request the amount of central storage needed in a REGION parameter.

Requesting Amount and Type of Storage

The amount of space needed by a job or step can be specified in the REGION
parameter of the JOB or EXEC statement. If REGION is on the JOB statement,
each step of the job executes in the requested amount of space. If on the EXEC
statements in a job, each step executes in its own amount of space. Use the EXEC
statement REGION parameters when different steps need greatly different amounts
of space.

The REGION parameter differs depending on whether the program uses virtual or
central storage.

Region Size for Virtual Storage

When ADDRSPC=VIRT is coded or implied, the system establishes two values from
the REGION parameter or the installation-defined default. These values are:

* An upper boundary to limit region size for variable-length GETMAINSs.

* A second limiting value set by the IBM- or installation-supplied routine IEALIMIT
or IEFUSI. The system uses this second value to limit:

— Fixed-length GETMAINS.

— Variable-length GETMAINs when the space remaining in the region is less
than the requested minimum.

When the minimum requested length for a variable-length GETMAIN or the
amount requested for a fixed-length GETMAIN exceeds this second value, the

job or step abnormally terminates. See I0S/390 MVS Initialization and Tining
\Guidd and 10S/390 MVS Programming: Assembler Services Guida.

The amount of space requested must include the following:
» Space for all programs to be executed.

+ All additional space the programs request with GETMAIN macro instructions
during execution.

* Enough unallocated space for task termination.

Region Size for Central (Real) Storage

When ADDRSPC=REAL is coded, the system establishes one value from the
REGION parameter or the installation-defined default. The value is used as an
upper boundary to limit region size for all GETMAINSs.

The minimum region size must be:

« 8K if the program to be executed is reenterable and resides in an authorized
library.

» 12K for all other programs.

Chapter 9. Entering Jobs - Resource Control ~ 9-7

Entering Jobs - Resource Control

Note that this is the minimum region for successful execution, but not necessarily
the minimum region size for successful job completion. Programs executed in
central storage should perform as much clean-up as possible before terminating.

Example 1

//328 JOB ,'F. GOLAZESKI',CLASS=D

//S1 EXEC PGM=PROGREAL,REGION=20K,ADDRSPC=REAL
//DD1 DD DSNAME=A.B.C,DISP=0LD

//S2 EXEC PGM=PROGVIRT,REGION=75K,ADDRSPC=VIRT
//DD2 DD DSNAME=MYDS2,DISP=0LD

This example shows how to request storage for a program that must not be paged
and for a program that can be paged. Step S1 executes in central (real) storage,
without paging, while step S2 executes in virtual storage, with paging.

Example 2
//STEPA EXEC PROC=MYPROC8,REGION.FIRST=750K,
// REGION.SECOND=700K

This EXEC statement assigns space requests to two procedure steps, FIRST and
SECOND, of a procedure named MYPROCS.

0S/390 UNIX System Services Considerations

In OS/390 UNIX System Services, callable service BPX1SRL lets a program modify
its REGION size. Note that only superusers can increase their REGION size. See

Beferencd for more information on the BPX1SRL callable service.

Requesting Amount of Logical Storage in a JES3 System

The LREGION parameter of the JES3 //*MAIN statement allows you to specify the
approximate size of the largest step’s working set in central (real) storage. JES3
uses the LREGION value to improve job scheduling. For more information, see

0S/390 JFS3 Initialization and Tuning Reference.

Use LREGION carefully. If the values selected for LREGION are too small, the job
may take longer to run.

Example
//*MAIN LREGION=100K

Resource Control of the Processor

Selecting a Processor Using A Scheduling Environment

You can specify the name of a WLM scheduling environment, using the SCHENV
parameter on the JOB statement. A scheduling environment is a list of resources
and their required settings. By associating a scheduling environment name with a
job, you ensure that the job will be scheduled only on a system that satisfies those
resource state requirements.

Scheduling environments differ from the JES2 SYSAFF parameter and JES3
SYSTEM parameter (presented in the next sections). A scheduling environment is
abstract and dynamic. It identifies the dependency that a job has to run on
particular systems without specifically naming the systems. Since a scheduling
environment can change state, the systems where a job is eligible to run can

9-8 0S/390 V2R10.0 MVS JCL User’s Guide

Entering Jobs - Resource Control

change without modification to its JCL. The SYSAFF and SYSTEM parameters are
specific and static, since they list system names.

Also, the SYSAFF parameter controls where a job converts and executes, whereas
a scheduling environment controls only where a job executes. (The SYSTEM
parameter does not differ from a scheduling environment in this way — both control
only where a job executes.)

You can use scheduling environments and the SYSAFF or SYSTEM parameter
together. A job may be restricted to either SYS1 or SYS2, for instance, based on
the scheduling environment associated with that work. The SYSAFF or SYSTEM
parameter may then further restrict that work only to SYS1.

For more information about WLM scheduling environments, see

Planning: Workload Management.

Example
//J0OBA JOB 1,'STEVE HAMILTON',SCHENV=DB2LATE

Selecting a Processor in JES2

In a JES2 multi-access spool configuration, jobs enter from local input streams,
from remote work stations, and from processors at other network nodes. If an
entering job does not specify a system, JES2 can assign the job to execute on any
system in the configuration.

In a multi-access spool configuration, a job can request execution on specific
systems. This request is made by coding:

/*JOBPARM SYSAFF=cccc

/*JOBPARM SYSAFF=(cccc,cccc,cccc)

/*JOBPARM SYSAFF=x*
/*JOBPARM SYSAFF=ANY

A specified system processes the job’s JCL and executes the job. The output from
the job can be processed by any system in the multi-access spool configuration.

You should request a specific system when a job has special processing
requirements not available on all systems in the configuration. For example, an
emulation job might need to run on a particular system.

You can provide a SCHENV default in a JES2 environment via a JOBCLASS(c)
specification.

For more information on the JES2 multi-access spool configuration, see los/zad

Independent Mode

If the job needs to be processed by a system in independent mode, code:

/*JOBPARM SYSAFF=(cccc,IND)
/*JOBPARM SYSAFF=(,IND)
/*JOBPARM SYSAFF=(ANY,IND)

A specified system, provided it is operating in independent mode, processes the
job’s JCL and executes the job. The same system processes the job’s output.

Chapter 9. Entering Jobs - Resource Control 9-9

Entering Jobs - Resource Control

Independent mode is useful for testing new components with selected jobs while in
a shared configuration.

Examples

/*JOBPARM SYSAFF=SYS2
/*JOBPARM SYSAFF=(S333,IND)
/*JOBPARM SYSAFF=(*,IND)

Selecting a Processor in JES3

JES3 automatically selects a processor for a job based on the resources that JES3
knows the job needs in order to execute. These resources are:

¢ Devices
¢ Volumes
¢ Data sets

» Processor features, such as an emulator, a nonstandard catalog, or a connection
to a particular system-managed device.

If a job must have resources that JES3 does not control or that JES3 cannot infer
from the job control statements, name the processor(s) that should or should not
execute the job by coding:

//*MAIN SYSTEM=ANY

//+*MAIN SYSTEM=JGLOBAL

//*MAIN SYSTEM=JLOCAL

//*MAIN SYSTEM=(main-name,main-name,...)

//*MAIN SYSTEM=/(main-name,main-name,...)

Relationship to Other Parameters

The requested processor must be consistent with other parameters specified in the
job control statements:

* CLASS parameter on the JOB statement or /*MAIN statement. A processor or
processors are defined for each valid job class during JESS initialization. If the
SYSTEM parameter specifies a processor that does not execute jobs of the
specified class, JES3 abnormally terminates the job.

» DD statement UNIT parameter that specifies a device-number for a device that is
JES3-managed or jointly JES3/MVS managed. The specified device must be
attached to the requested processor. Also, because a specific device is
requested, the SYSTEM parameter is required.

* The TYPE parameter on the //*MAIN statement must specify the system running
on the requested processor.

* The processing requests made in JES3 //*PROCESS statements. Any dynamic
support programs called in /*PROCESS statements must be able to be executed
on the requested processor.

Examples
//*MAIN SYSTEM=(PRS1,PRS3)

Resource Control of Spool Partitions in a JES3 System

When JES3 reads a job, it initially places the job on a spool volume or volumes.
The spool volumes can be divided by the installation into groups, known as
partitions. During JESS initialization, partitions are defined and associated with
outEut classes, job classes, and processors. See IQS/390 JES3 Initialization and

for details.

9-10 0S/390 V2R10.0 MVS JCL User's Guide

Entering Jobs - Resource Control

During job processing, JES3 allocates spool data sets to a partition, as follows, in
override order:

1. The spool partition for the output class of the sysout data set.

2. The spool partition for the job’s class.

3. The spool partition for the processor executing the job.

4. The default spool partition.

You can use the /*MAIN statement to override the JES3 partition allocations,
except for allocation of partitions for sysout data sets and SYSIN data sets. A
sysout data set is always placed in the partition used for its output class; a SYSIN
data set is always placed in the default spool partition. Depending on how the
installation defines the partitions, you can make JESS3 allocate all the spool data for
a job or all the spool data of a particular type, such as output, to a specified spool
partition. Thus, you can limit the number of spool volumes that JES3 uses for a
job’s spool data sets. To control the spool partition, code:

//*MAIN SPART=partition-name

Example 1

//ONE JOB ,'PAT EGAN'
//*MAIN SYSTEM=SY2

//51 EXEC PGM=ABC
//0UT1 DD SYSOUT=N
//0UT2 DD SYSOUT=S

During initialization, the installation assigned spool partitions as follows:
* PARTD is assigned to output class S.

* PARTC is assigned to processor SY2.

* PARTA is the default partition.

* No partition is assigned to output class N.

The job’s input spool data sets are allocated to the default spool partition, PARTA.

Because the job executes on processor SY2 and no partition is assigned for output
class N, the sysout data set OUT1 is allocated to partition PARTC.

Sysout data set OUT2 is allocated to PARTD.

Example 2

//TWO JOB , 'LEE BURKET'
//*MAIN CLASS=IMSBATCH,SYSTEM=SY2
/751 EXEC ~ PGM=DEF

//0UT1 DD SYSOUT=N

//0UT2 DD SYSOUT=S

During initialization, the installation assigned spool partitions as for job ONE, with
the following addition:
* PARTB is assigned to job class IMSBATCH.

The sysout data set OUT1 is allocated to partition PARTB, the job class’s partition.
Note that the job class’s partition overrides the processor’s partition.

Example 3

//THREE JOB ,'T. POLAKOWSKI'

//*MAIN CLASS=IMSBATCH,SPART=PARTE,SYSTEM=SY2
//STEP1 EXEC PGM=GHI

//0UT DD SYSOUT=N

//0UT2 DD SYSOUT=S

Chapter 9. Entering Jobs - Resource Control ~ 9-11

Entering Jobs - Resource Control
During initialization, the installation assigned spool partitions as for job TWO.
The sysout data set OUT1 is allocated to partition PARTE, as specified in the

SPART parameter. Note that the SPART parameter overrides the processor’s
partition and the job class’s partition.

9-12 0S/390 V2R10.0 MVS JCL User's Guide

Part 3. Tasks for Processing Jobs

This part describes how to process jobs that have been entered into the system.
These tasks are all optional. They are:

* Processing control

» Performance control

© Copyright IBM Corp. 1988, 2000

Part 3. Tasks for Processing Jobs

0S/390 V2R10.0 MVS JCL User’'s Guide

Chapter 10. Processing Jobs - Processing Control

Table 10-1. Processing Control Task for Processing Jobs

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
:’ggg ESSING JCL Statements JES2 JES3 Statements
JOB EXEC Other JCL Statements
Processing Control
by conditional COND COND IF/THEN/ELSE/ENDIF | CANCEL on CANCEL on
execution statement construct BYTES, BYTES, CARDS,
CANCEL on CARDS, LINES, | LINES, and
BYTES, CARDS, and PAGES on |PAGES on
LINES, and /*JOBPARM /I*MAIN
PAGES
by timing TIME or time in TIME TIME on
execution JOB JES2 /*JOBPARM
accounting
information
for testing: TYPRUN PGM=IEFBR14 SYSMDUMP DD /I*PROCESS
1. by altering CLASS SYSUDUMP DD /'ENDPROCESS
usual DUMP on PGM=JCLTEST |SYSABEND DD DUMP on
processing BYTES, CARDS, |PGM=JSTTEST BYTES, CARDS,
2. by dumping LINES, and (JESS3 only) LINES, and
) ft PAGES To format dump on PAGES on
after error 3800 Printing /"MAIN
Subsystem,
FCB=STDS3 and
CHARS=DUMP on
dump DD.

Processing Control by Conditional Execution

You can conditionally execute steps in a job by using the IF/THEN/ELSE/ENDIF
statement construct or the COND parameter.

Bypassing or Executing Steps Based on the Evaluation of Previous

Steps

© Copyright IBM Corp. 1988, 2000

Depending on the results of a job step, you might need to bypass or execute later
steps. For instance, if a step terminates abnormally, you might want to execute an
error routine procedure; while if the step terminates normally, you want to continue
processing with the next step.

Using the IF/THEN/ELSE/ENDIF Statement Construct
You can conditionally execute job steps with the IF/THEN/ELSE/ENDIF statement

construct. Use this statement construct instead of the COND parameter to
conditionally execute job steps based on:

* Return codes

* Abend conditions

» System or user abend completion codes.

The IF/THEN/ELSE/ENDIF statement construct tests whether these conditions

occurred in the job, a step, or a procedure step prior to the IF/THEN/ELSE/ENDIF
statement construct.

10-1

Processing Jobs - Processing Control

You can code the IF/THEN/ELSE/ENDIF statement construct anywhere in the job
after the JOB statement. Code it as follows:

// [name] IF (relational expression) THEN
//STEPTRUE EXEC

// [name] ELSE

//STEPFALS EXEC

// ENDIF

The relational expression consists of:
« Comparison operators

* Logical operators

* Not () operators

* Relational expression keywords.

Comparison operators compare a relational expression keyword to a numeric value.
The comparison results in a true or false condition. Use the logical operators &
(AND) and | (OR) in complex relational expressions, to indicate that the system
evaluates the Boolean result of two or more relational expressions. The = (NOT)
operator reverses the testing of the relational expression. Relational expression
keywords indicate that you are evaluating a return code, abend condition, or abend
completion code.

Either the THEN clause or ELSE clause must contain at least one EXEC statement.
The EXEC statement indicates a job step that the system executes based on its
evaluation of the relational expression. A THEN or ELSE clause that does not
contain an EXEC statement is a null clause.

You can nest IF/THEN/ELSE/ENDIF statement constructs up to 15 levels of nesting.

Uses of Return Code Tests
Certain IBM programs produce standard return codes. For example, a compiler or

linkage editor returns a code of 8 to indicate serious errors in the compiled or
link-edited program; the program may not execute correctly. Before executing a
newly compiled or link-edited program, test the return code from the compiler or
linkage editor; if it is 8, bypass execution of the program.

In user-written programs, assign a return code to signify a certain condition. For

example, STEP1 of a job reads accounts that subsequent steps process. STEP1

sets a return code of 10 if delinquent accounts are found. STEP3 processes only

delinquent accounts. Before STEP3 executes, test the return code from STEP1:

 If the return code from STEP1 is 10, indicating delinquent accounts, execute
STEPS.

* If the return code from STEP1 is not 10, bypass STEP3.

Code the IF/THEN/ELSE/ENDIF statement construct as follows:

//RCTEST IF (STEP1.RC = 10) THEN
//STEP3 EXEC

//IENOT ELSE

// ENDIF

//NEXTSTEP EXEC

Compatible Return Code Tests: The system applies the return code tests on the
IF/THEN/ELSE/ENDIF statement construct to the return code, if any, produced by a
job, step, or procedure step in the job. To take advantage of this statement
construct, the return codes for each step should have compatible meanings. For
example, the COBOL compiler and the linkage editor have compatible return codes:

10-2 0S/390 V2R10.0 MVS JCL User’s Guide

Processing Jobs - Processing Control

4 Minor errors were found, but a compiled program or load module was
produced. Execution may be successful.

8 Major errors were found, but a compiled program or load module was
produced. Execution will probably not be successful.

12 Serious errors were found. A compiled program or load module was not
produced.

To continue processing in spite of small errors, code the return code test as follows:

//NOTBAD IF (RC > 4) THEN
//BADERR EXEC PGM=ERRRTN
//NOGOOD ~ ELSE

//NEXTSTEP EXEC

// ENDIF

When a previous job step has a return code greater than 4, step BADERR executes
an error routine procedure called ERRRTN. When the return code on all previous
job steps is less than or equal to 4, the ELSE statement allows processing to
continue with step NEXTSTEP.

Job and Step Level Evaluation Using the IF/THEN/ELSE/ENDIF
Statement Construct

The way you code the IF/THEN/ELSE/ENDIF statement construct determines
whether the statement construct tests all job steps, a single job step, or a procedure
step.

Job Level Evaluation: If you do not code a stepname, the IF/THEN/ELSE/ENDIF
statement construct evaluates the return code, abend condition, or run condition of
every previous step in the job. If the condition (return code, abend condition, or run
condition) is satisfied based on the steps in the job that have executed thus far, the
system executes the THEN clause.

Step Level Evaluation: To test a single step, code the stepname of the step you
want to test. To test a procedure step, code the stepname.procstepname of the
procedure step you want to test. If the step or procedure step that you are
evaluating did not execute, was cancelled or ended abnormally, the result of the
evaluation is false.

Relationship of the IF/THEN/ELSE/ENDIF Statement Construct to
the COND Parameter

When you specify both the IF/THEN/ELSE/ENDIF statement construct and the
COND parameter for a job step, the job step represented by the EXEC statement
will execute only when both the IF/THEN/ELSE/ENDIF statement construct and the
COND parameter evaluate to execute.

If a job abends and no abend condition was specified on the IF/THEN/ELSE/ENDIF
statement construct or the COND parameter, the default is that a job step will not
execute. When both the IF/THEN/ELSE/ENDIF statement construct and the COND
parameter are specified for a job step, the default is applied only when neither
specifies an abend condition.

The system evaluates a COND parameter on the first EXEC statement in a job as

false. However, you can use an IF statement before the first EXEC statement in a
job to bypass the step.

Chapter 10. Processing Jobs - Processing Control ~ 10-3

Processing Jobs - Processing Control

Step Execution After a Preceding Step Abnormally Terminates
Abnormal termination of a step usually causes the system to bypass subsequent
steps and to terminate the job. However, the IF/THEN/ELSE/ENDIF statement
construct lets you request execution of a step when a previous step terminates
abnormally.

Testing for an Abend Condition: When a job step abends, the system scans the
remaining steps for an IF/THEN/ELSE/ENDIF statement construct that tests for an
abend or abend completion code. If none is present, the system terminates the job.

Code one of the following to execute an error routine program after an abend:

//1FBAD IF (ABEND) ~ THEN
//ERROR EXEC PGM=ERRRTN
// ENDIF

//NEXTSTEP EXEC

or:

//1FBAD IF (ABEND=TRUE) THEN
//ERROR EXEC ~ PGM=ERRRTN
// ENDIF

//NEXTSTEP EXEC

The system executes step ERROR only when one or more of the preceding steps
abnormally terminates.

Testing for an Abend Completion Code: To execute a step based on the
evaluation of an abend completion code, code:

//1FABEND IF (ABENDCC=SOC4) THEN

//ABNDSTEP ~ EXEC PGM=CLEANUP

// ENDIF
//NEXTSTEP EXEC

The system executes the program CLEANUP when a previous step has the system
abend completion code 0CA4.

Steps that Do Not Execute after A Preceding Step Abnormally
Terminates

Certain error conditions prevent the system from executing the THEN or ELSE
clauses of an IF/THEN/ELSE/ENDIF statement construct. When one of these error
condition occurs, the system does not execute the THEN or ELSE clause,
regardless of any tests on the IF statement. Such errors conditions occur when:

» Certain system completion codes are issued

» Job time expires

» A referenced data set is not complete

* The program does not have control.

For more information about errors that prevent execution regardless of IF statement
tests, see [0S/390 MVS JCL Referenca.

Examples of IF/THEN/ELSE/ENDIF Statement Construct
Example 1: This example tests the return code for a step.

//RCTEST IF (STEP1.RC GT 20|STEP2.RC = 60) THEN
//STEP3 EXEC PGM=U

//ENDTEST ENDIF

//NEXTSTEP EXEC

The system executes STEPS if
* The return code from STEP1 is greater than 20, or

10-4 0S/390 V2R10.0 MVS JCL User’s Guide

Processing Jobs - Processing Control

* The return code from STEP2 equals 60.

If the evaluation of the relational expression is false, the system bypasses STEP3
and continues processing with step NEXTSTEP.

Example 2: This example tests for an abend condition in a procedure step.

//ABTEST IF (STEP4.LINK.ABEND=FALSE) THEN
//BADPROC ELSE

//CLEANUP EXEC ~ PGM=ERRTN

//ENDTEST ENDIF

//NEXTSTEP EXEC

The relational expression tests that an abend did not occur in procedure LINK,
called by the EXEC statement in STEP4. If the relational expression is true, no
abend occurred. The null THEN statement passes control to step NEXTSTEP. If the
relational expression is false, an abend occurred. The ELSE clause passes control
to the program called ERRTN.

Example 3: This example tests for a user abend completion code in the job.

//CCTEST IF (ABENDCC = UO100) THEN
//GOAHEAD EXEC PGM=CONTINUE

//NOCC ELSE

//EXIT EXEC PGM=CLEANUP

// ENDIF

If any job step produced the user abend completion code 0100, the EXEC
statement GOAHEAD calls the procedure CONTINUE. If no steps produced the
completion code, the EXEC statement EXIT calls program CLEANUP.

Bypassing or Executing Steps Based on Return Codes

To indicate the results of its execution, a program can issue a return code. Using a
COND parameter, you can test the return code and, based on the test, either
bypass or execute a step.

The COND parameter can be specified on either a JOB or EXEC statement by
coding:

//jobname JOB acct,progname,COND=(code,operator)

//jobname JOB acct,progname,COND=((code,operator), (code,operator))

//stepname EXEC PGM=x,COND=(code,operator)
//stepname EXEC PGM=x,COND=(code,operator,stepname)
//stepname EXEC PROC=x,COND=((code,operator,stepname.procstepname))

//stepname EXEC PGM=x,COND=EVEN

//stepname EXEC PGM=x,COND=ONLY

//stepname EXEC PGM=x,COND=((code,operator),EVEN)
//stepname EXEC PGM=x,COND=((code,operator,stepname),ONLY)

If an EXEC statement COND parameter causes a step to be bypassed, only that
step is not executed; the following steps are executed or not, depending on their
COND parameters. If a JOB statement COND parameter causes a step to be
bypassed, the system bypasses all remaining job steps.

Bypassing a step because of an EXEC COND parameter is not the same as
abnormally terminating the step. Bypassing permits the following steps to be
executed; abnormally terminating causes all following steps to be bypassed, unless
they contain EVEN or ONLY in their EXEC COND parameters.

Chapter 10. Processing Jobs - Processing Control ~ 10-5

Processing Jobs - Processing Control

Uses of Return Code Tests
Certain IBM programs produce standard return codes. For example, a compiler or

linkage editor returns a code of 8 to indicate serious errors in the compiled or
link-edited program; the program may not execute correctly. Before executing a
newly compiled or link-edited program, test the return code from the compiler or
linkage editor; if it is 8, bypass execution of the program.

In user-written programs, assign a return code to signify a certain condition. For
example, STEP1 of a job reads accounts that subsequent steps process. STEP1
sets a return code of 10 if delinquent accounts are found. STEP3 processes only
delinquent accounts. Before STEP3 executes, test the return code from STEP1:

* If the return code from STEP1 is 10, indicating delinquent accounts, execute
STEPS.

* If the return code from STEP1 is not 10, bypass STEP3.

Relationship of the COND Parameters on JOB and EXEC

Statements

The effect of return code tests on the different statements is:

* The JOB statement COND parameter performs the same return code tests for
every step in a job. If a JOB statement return code test is satisfied, the job
terminates.

* An EXEC statement COND parameter performs return code tests for only its
step in a job. Using EXEC COND parameters, different tests can be performed
for each step. Thus, EXEC COND parameters are useful if the same return code
has different meanings in different job steps, or if you want to take different
actions according to which job step produced a return code.

The system evaluates a COND parameter on the first EXEC statement in a job
as false. However, you can use an IF statement before the first EXEC statement
in a job to bypass the step.

* The JOB COND parameter, when EXEC statements also contain COND
parameters, performs the same return code tests for every step in the job.

— If the JOB statement return code test is satisfied, the job terminates. The job
terminates regardless of whether or not any EXEC statements contain COND
parameters and whether or not an EXEC return code test would be satisfied.

— If the JOB statement return code test is not satisfied, the system then checks
the COND parameter on the EXEC statement for the next step. If the EXEC
statement return code test is satisfied, the system bypasses that step and
begins processing of the following step, including return code testing.

The COND parameter on both the JOB and EXEC statements is useful to set
some conditions for all steps in the job and other conditions for particular steps.

* No COND parameters on JOB or EXEC statements means the system does
not perform any return code tests, but tries to execute each step in the job.

Step Execution after a Preceding Step Abnormally Terminates
Abnormal termination of a step usually causes the system to bypass subsequent

steps and to terminate the job. However, the EXEC statement COND parameter lets
you request execution of a step by coding:
//stepname EXEC PGM=x,COND=EVEN
The step is to be executed even if one or more of the preceding steps
abnormally terminates. That is, the step will always be executed, whether or not
a preceding step abnormally terminates.

//stepname EXEC PGM=x,COND=ONLY

10-6 0S/390 V2R10.0 MVS JCL User’s Guide

Processing Jobs - Processing Control

The step is to be executed only if one or more of the preceding steps
abnormally terminates. That is, the step will not be executed, unless a preceding
step abnormally terminates.

If a step abnormally terminates, the system scans the EXEC COND parameter for
the next step for an EVEN or ONLY subparameter. If neither is present, the system
bypasses the step. If EVEN or ONLY is specified, the system makes any requested
return code tests against the return codes from previous steps that executed and
did not abnormally terminate. The step is bypassed if any test is satisfied.
Otherwise, the step is executed.

Note: Certain error conditions prevent the system from executing a step,
regardless of any requests specified through the COND parameter. Other
considerations are also related to the use of the COND parameter. For
information on cautions when specifying COND parameters, see the

descriEtion of the COND parameter on the EXEC statement in

Compatible Return Code Tests: The system applies the return code tests on the
JOB COND parameter against the return code, if any, produced by each step in the
job. To take advantage of this parameter, the return codes for each step should
have compatible meanings. For example, the COBOL compiler and the linkage
editor have compatible return codes:

4 Minor errors were found, but a compiled program or load module was
produced. Execution may be successful.

8 Major errors were found, but a compiled program or load module was
produced. Execution will probably not be successful.

12 Serious errors were found. A compiled program or load module was not
produced.

Code the return code as follows:
COND=(4,LT) if you want to continue processing despite the minor errors. The
job terminates only if the return code of any step is greater than 4.
COND=(4,LE) if you want to continue processing only if no errors occur. The job
terminates if the return code of any step is greater than or equal to 4.

Examples of JOB Statement Return Code Tests

Example 1:
//J1 JOB ,'LEE BURKET',COND=((10,GT),(20,LT))

This example asks ‘Is 10 greater than the return code or is 20 less than the return
code?’. If either is true, the system skips all remaining job steps. If both are false
after each step executes, the system executes all job steps.

For example, if a step returns a code of 12, neither test is satisfied. The next step is
executed. However, if a step returns a code of 25, the first test is false, but the
second test is satisfied: 20 is less than 25. The system bypasses all remaining job
steps.

Example 2:
//J2 JOB ,'D WEISKOPF',COND=((50,GE),(60,LT))

Chapter 10. Processing Jobs - Processing Control ~ 10-7

Processing Jobs - Processing Control

This example says ‘If 50 is greater than or equal to a return code, or 60 is less than
a return code, bypass the remaining job steps.” In other words, the job continues as
long as the return codes are 51 through 60.

Example 3:
//33 JOB ,'E. SASSMANN',COND=(8,NE)

This example shows one return code test.

Example 4:
//34 J0B COND=((5,GT),(8,EQ),(12,EQ),(17,EQ), (19,EQ), (21,EQ), (23,LE))

This example shows seven return code tests. The job continues only if the return
codes are: 5, 6, 7,9, 10, 11, 13, 14, 15, 16, 18, 20, or 22.

Examples of EXEC Statement Return Code Tests

Example 1:
//S3 EXEC PGM=U,COND=((20,GT,STEP1),(60,EQ,STEP2))

This example says ‘Bypass this step if 20 is greater than the return code STEP1
issues, or if STEP2 issues a return code of 60.

Example 2:
//S4 EXEC PGM=V,COND=((20,GT,STEP1), (60,EQ))

This example says ‘Bypass this step if 20 is greater than the return code STEP1
issues, or if any preceding step issues a return code of 60’.

Example 3:

//T7 EXEC PGM=B15,COND=(10,LT)
//STEP8 EXEC PGM=MYPROG,COND=(15,NE,STEP5)

These examples show single return code tests.

Example 4:
//NEXT EXEC PGM=AFTERPRC,COND=(7,LT,STEP4.LINK)

This example says ‘Bypass this step if 7 is less than the return code issued by a
procedure step named LINK in the cataloged procedure called by the EXEC
statement named STEP4’.

Example 5:
//RCERROR EXEC PGM=ABEND,COND=(4,GE)

This example shows a single return code test. When you do not code a stepname,
the step RCERROR will execute only when the return codes of all previous steps
do not satisfy the test specified by COND.

Examples of EXEC COND Parameters with EVEN and ONLY

Example 1:

//S5 EXEC PGM=R,COND=EVEN

//R8 EXEC PGM=S,COND=((5,LT),EVEN)

//S6 EXEC PGM=T,COND=ONLY

//CX EXEC PGM=U,COND=((4,GE,STEP3),(8,EQ,STEP2),0NLY,(12,LT,BX))

10-8 05/390 V2R10.0 MVS JCL User’s Guide

Input Stream

Processing Jobs - Processing Control

Example 2:
//LATE EXEC PGM=CLEANUP,COND=EVEN

This example says ‘Execute program CLEANUP even if one or more of the
preceding steps abnormally terminated.’

Example 3:
//LATER EXEC PGM=SCRUB,COND=((10,LT,STEPA), (20,EQ),ONLY)

This example says ‘Execute this step only if one of the preceding steps terminated
abnormally; but bypass it if 10 is less than the return code STEPA issues or if any
of the steps that terminated normally issued a return code of 20’.

Example 4:
//LATEST EXEC PGM=FIX,COND=((10,LT,STEPA),(20,EQ),EVEN)

This example says ‘Bypass this step if 10 is less than the return code STEPA
issues, or if any of the preceding steps issues a return code of 20; otherwise
execute this step even if one of the preceding steps terminated abnormally’.

Example 5:

//EXG EXEC PGM=A1,COND=(EVEN, (4,GT,STEP3))
//EXH EXEC PGM=A2,COND=((8,GE,STEP1),(16,GE),ONLY)
//EXT EXEC PGM=A3,COND=((15,GT,STEP4),EVEN, (30,EQ,STEP7))

Examples of COND Return Code Testing in a Job
RC Tests Performed

//MYJOB JOB ,A.SMITH,COND=(10,LT)

//STEP1 EXEC PGM=A

6 Before STEP2:
1. Is 10 less than 6? No.
2. Is the return code 2 or 4? No.
Execute STEP2

//STEP2 EXEC PGM=B,COND=((2,EQ),(4,EQ)) 2 Before STEP3:

1. Is 10 less than 2 or 6?7 No.

2. Did one or more of the preceding
steps terminate abnormally? No.
Bypass STEPS3.

//STEP3 EXEC PGM=C,COND=ONLY - Before STEP4:

//STEP4 EXEC PGM=D,

1. Is 10 less than 2 or 6? No.

2. Is 5 greater than 6? No.

3. Is one of the preceding return codes
equal to 2? Yes. Bypass STEP4.

- Before STEP5:

// COND=((5,GT,STEP1), (2,EQ)) 1. Is 10 less than 2 or 6? No.

//STEP5 EXEC PGM=E

Execute STEPS5.

9 Before STEPG6:
1. Is 10 less than 9, 2, or 67 No.
2. Is 8 greater than 97 No.
3. Did one of the preceding steps
terminate abnormally? No.
Execute STEPS6.

Chapter 10. Processing Jobs - Processing Control ~ 10-9

Processing Jobs - Processing Control

Input Stream

//STEP6 EXEC PGM=F,

// COND=((8,GT,STEP5) ,EVEN)
//STEP7 EXEC PGM=G,COND=(4,GT,STEP4)

//STEP8 EXEC PGM=H

//STEP9 EXEC PGM=I,COND=ONLY
//ABC JOB 12345,COND=(5,EQ)
//STEP1 EXEC PGM=A

//STEP2 EXEC PGM=B,COND=(7,LT)

//STEP3 EXEC PGM=C,
/] COND=((20,GT,STEP1) ,EVEN)

//STEP4 EXEC PGM=D,COND=((3,EQ),ONLY)
//STEP5 EXEC PGM=E,COND=(2,LT,STEP3)

//STEP6 EXEC PGM=F

//STEP7 EXEC PGM=G,
// COND=((6,EQ,STEP5) ,ONLY)

10-10 0S/390 V2R10.0 MVS JCL User's Guide

RC
10

12

ABEND

Tests Performed

Before STEP7:

1. Is 10 less than 10, 9, 2, or 6?7 No.

2. Is 4 greater than return code of STEP4?
STEP4 was bypassed and did not produce a
return code so this test evaluates as FALSE.
Execute STEP7.

Before STEPS:
1. Is 10 less than 12, 10, 9, 2, or 6?7 Yes.
Bypass STEP8 and STEP9.

Before STEP2:

1. Is 5 equal to 4? No.
2. Is 7 less than 4? No.
Execute STEP2.

Before STEP3:

1. Is EVEN or ONLY specified in
STEP3? Yes.

2. Is 5 equal to 4?7 No.

3. Is 20 greater than 4? Yes.
Bypass STEPS3.

Before STEP4:

1. Is EVEN or ONLY specified in
STEP4? Yes.

2. Is 5 equal to 4? No.

3. Are any preceding return codes
equal to 3? No. Execute STEP4.

Before STEPS5:
1. Is EVEN or ONLY specified in
STEP5? No. Bypass STEPS.

Before STEPG6:
1. Is EVEN or ONLY specified in
STEP6? No. Bypass STEPS6.

Before STEP7:

1. Is EVEN or ONLY specified in

STEP7? Yes.

2. Is 5 equal to 6 or 4? No.

3. Is 6 equal to the return code of STEP5?
STEP5 was bypassed and did not produce a
return code so this test evaluates as FALSE.
Execute STEP?7.

Before STEPS:

1. Is 5 equal to 5, 6, or 4? Yes.

Bypass STEP8 and STEP9.

Input Stream

Processing Jobs - Processing Control

RC Tests Performed

//STEP8 EXEC PGM=H,COND=EVEN -

//STEP9 EXEC PGM=I

Examples of COND Parameters in Procedures

Example 1:

//TEST EXEC PROC=PROC4,COND.STEP4=((7,LT,STEP1),
// (5,EQ) ,EVEN) ,COND.STEP6=((2,EQ),

// (10,GT,STEP4))

In this example, the EXEC statement that calls procedure PROC4 passes COND
parameters to two steps, STEP4 and STEPS,

Example 2:
//TEST EXEC PROC=MYPROC,COND=((7,LT,STEP1),(5,EQ))

This EXEC statement establishes a COND parameter for all steps in the called
procedure. It overrides any COND parameters in the procedure, if coded.

Example 3:
//PS3 EXEC PGM=ADD3,COND=(5,EQ,STEP2)

In this EXEC statement in a procedure, STEP2 in the COND parameter can be the
name of either a preceding step in the procedure or of a preceding step in the job.

Example 4:
Your job contains Cataloged
Procedure
PRA
/[TWO EXEC PROC=PRA //EDIT EXEC
Cataloged
Procedure
) PRB
//THREE EXEC PROC=PRB,COND.SP3=(10,LT,TWO.EDIT) :
) //SP3 EXEC

This example shows a procedure EXEC statement COND parameter that tests the
return code from a step in another procedure called by a previous step in this job.

1. Step TWO calls cataloged procedure PRA, which contains procedure step EDIT.
The system is to test the return code from EDIT.

Chapter 10. Processing Jobs - Processing Control ~ 10-11

Processing Jobs - Processing Control

2. Step THREE calls cataloged procedure PRB, which contains procedure step
SP3. Execution of SP3 should depend on the return code from EDIT.

3. The COND parameter in EXEC statement THREE directs the system to bypass
SP3 if 10 is less than the return code from procedure step EDIT.

The COND parameter could also have appeared on EXEC statement SP3:
//SP3 EXEC PGM=DEPEND,COND=(10,LT,TW0.EDIT)

To direct the system to bypass all steps in procedure PRB, code the COND
parameter without the SP3 qualifier, as follows:

//THREE EXEC PRB,COND=(10,LT,TWO0.EDIT)
Examples of COND Parameters that Force Step Execution

//S1 EXEC PGM=A

//CLEANUP EXEC PGM=FIX,COND=(12,NE,S1)

In this example, you force step CLEANUP to execute if step S1 executes but issues
a return code of 12 to indicate that data sets might contain invalid records. The
program FIX would clean up the invalid records.

Processing Control by Cancelling a Job that Exceeds Output Limit

You can control job execution by requesting cancellation of a job when its output
exceeds a specified limit. The way you specify the limit depends on the
environment in which your job is executing.

Limiting Output in an APPC Scheduling Environment

In an APPC scheduling environment, use the BYTES, CARDS, LINES, and PAGES
parameters of the JOB statement to limit the number of:

» Bytes to be spooled for the job

» Cards to be punched for the job

* Lines to be printed for the job

» Pages to be printed for the job.

When you code the CANCEL subparameter with any of these parameters, the
system cancels the job when the output exceeds the limit you have specified.

If you do not code a limit on the JOB statement BYTES, CARDS, LINES, or PAGES
parameter, the system cancels the job when its output exceeds the installation
default limit specified at JES initialization, and the JES cancel option has been
specified.

Limiting Output in a Non-APPC Scheduling Environment

In a non-APPC scheduling environment, you can specify an output I|m|t using the
JOB statement parameters and installation defaults described in

. In addition, you can code a BYTES, CARDS,
LINES, or PAGES parameter on a JES2 /*JOBPARM statement or a JES3 //*"MAIN
statement. These parameters limit the number of:
» Bytes to be spooled for the job
» Cards to be punched for the job
* Lines to be printed for the job

10-12 0S/390 V2R10.0 MVS JCL User’s Guide

Processing Jobs - Processing Control

» Pages to be printed for the job.

When you code the CANCEL subparameter on the //*MAIN statement, the system
cancels the job when its output exceeds the limit you have specified.

When you code an output limit on the /*JOBPARM statement, the system cancels
the job when:

* The job’s output exceeds the limit you have specified, and

» The cancel option has been specified at JES2 initialization as the installation
default.

If you do not code an output limit on the JOB statement, the system uses the limit
coded on the //*MAIN statement or the /*JOBPARM statement. If you do not code a
/"MAIN or a /*JOBPARM statement, the system uses the installation default limit
specified at JES initialization, and cancels the job if the JES cancel option has been
specified.

Use in Testing

One use for the output limit is during program testing. You can cancel a program
that is in an endless loop containing instructions that send records to a sysout data
set.

Examples:

The following examples illustrate the use of the JCL JOB statement, in either an
APPC or non-APPC scheduling environment, to warn the operator when the output
for a job has exceeded a limit in any JES system:

//J0B1 JOB ACCTO1,'D. PIKE',BYTES=(50,CANCEL)
//J0B2 JOB 1542 ,RWALLIN,CARDS=(120,CANCEL)
//J0B3 JOB ,ZOBES,LINES=(200,CANCEL)

//J0B4 JOB ACCT27,'S M SHAY',PAGES=(,CANCEL)

The following examples illustrate the use of the JES3 //*MAIN statement in a
non-APPC scheduling environment to warn the operator when output for a job has
exceeded a limit.

//*MAIN BYTES=(50,CANCEL)

//*MAIN CARDS=(120,CANCEL)

//*MAIN LINES=(200,CANCEL)

//*MAIN PAGES=(,CANCEL)

Processing Control by Timing Execution

To control processing based on the processor time needed to execute a program,
code one of the following time parameters:

//jobname JOB acct,progname,TIME=value

//stepname EXEC PGM=x,TIME=value

//jobname JOB (,,time)
/*JOBPARM TIME=value

JOB and EXEC TIME Parameter

The TIME parameter on the JOB or EXEC statement specifies the maximum length
of time a job or step is to use the processor. Two benefits of the TIME parameter
are:

Chapter 10. Processing Jobs - Processing Control 10-13

Processing Jobs - Processing Control

* The system prints the actual processor time used by the job or step in the
messages in the job log.

* When a job or step exceeds the amount of time coded on the TIME parameter,
the system abnormally terminates it or gives control to an installation exit routine
established through System Management Facilities (SMF). Thus, the TIME value
limits the processor time wasted by a looping program.

By coding TIME=1440 or TIME=NOLIMIT, the TIME parameter can instead be used
to give a job or step an unlimited amount of time. Specifically, the system allows a
step to remain in a continuous wait state for an unlimited time, rather than the time
limit established through SMF. However, if TIME=1440 is specified on the JOB
statement, any TIME values on an EXEC statement and any default TIME values
will be nullified. All steps within the job will have unlimited time, as with TIME=1440
or TIME=NOLIMIT.

To allow a job or step to use the maximum amount of time, code TIME=MAXIMUM.
Coding TIME=maximum allows the job or step to run for 357912 minutes.

Example 1:

//FIRST JOB ,'E.D. WILLIAMSON',TIME=2
//STEP1 EXEC PGM=A,TIME=1
//STEP2 EXEC PGM=B,TIME=1

In this example, the job is allowed 2 minutes of execution time and each step is
allowed 1 minute. Should either step try to execute beyond 1 minute, the job will
terminate beginning with that step.

Example 2:

//SECOND JOB ,'M. CARLO',TIME=3
//STEP1 EXEC PGM=C,TIME=2
//STEP2 EXEC PGM=D,TIME=2

In this example, the job is allowed 3 minutes of execution time. Each step is
allowed 2 minutes of execution time. Should either step try to execute beyond 2
minutes, the job will terminate beginning with that step. If STEP1 executes in 1.74
minutes and if STEP2 tries to execute beyond 1.26 minutes, the job will be
terminated because of the 3-minute time limit specified on the JOB statement.

Example 3:

//THIRD JOB ,'A. DOMENICK',TIME=2
//STEP1 EXEC PGM=E,TIME=3

In this example, the job is allowed 2 minutes of execution time. Since the time
specified on the JOB statement is less than the time on the EXEC statement,
STEP1 is only allowed 2 minutes of execution time. If STEP1 attempts to execute
beyond 2 minutes, the job will terminate in that step.

Example 4:
//AAA EXEC PROC=PROC5,TIME=20

In this example, the EXEC statement sets a time limit for an entire procedure. This
specification overrides any TIME parameters in the procedure, if coded.

Example 5:
//AAA EXEC PROC=PROC5,TIME.ABC=20,TIME.DEF=(3,40)

10-14 0S/390 V2R10.0 MVS JCL User’s Guide

Processing Jobs - Processing Control

In this example, the EXEC statement sets a time limit for two steps, ABC and DEF,
of the called cataloged procedure.

JES2 Time Parameters

In a JES2 system, you can code a time value in the JES2 format accounting
information parameter on the JOB statement or in a TIME parameter on the JES2
/*JOBPARM statement. If the job execution time exceeds this value, JES2 sends a
message to the operator.

Examples:

//33 JOB (,,3)
/*JOBPARM TIME=3

Both of these statements specify that the job cannot use the processor for more
than 3 minutes.

0S/390 UNIX System Services Considerations

In OS/390 UNIX System Services, callable service BPX1SRL lets a program modify
its job time. See i ing:
iServices Referencd for more information on the BPX1SRL callable service.

Processing Control for Testing

You can test your JCL for errors by using one of the following methods.

Altering Usual Processing for Testing

These testing methods change the standard job processing to allow the system to
find errors.

Scanning JCL for Errors (Non-APPC)

The TYPRUN and CLASS parameters described in this section have no effect in an
APPC scheduling environment. If you code them, the system will check them for
syntax and ignore them.

Before using a new set of job control statements, you can ask the system to scan
them for syntax errors without executing any steps or allocating any devices. To do
this scanning, code:

* For ajob in a JES2 or JES3 system:
//jobname JOB acct,progname,TYPRUN=SCAN

* For ajob in a JES2 system, where x is a class defined during JES2 initialization
to force job control statement scanning:

//jobname JOB acct,progname,CLASS=x
* For a step in a JES3 system:

//stepname EXEC PGM=JCLTEST
//stepname EXEC PGM=JSTTEST

The system scans for:

 Invalid spelling of parameter keywords and some subparameter keywords.
* Invalid characters.

* Unbalanced parentheses.

» Misplaced positional parameters on some statements.

* In a JES3 system only, parameter value errors or excessive parameters.

Chapter 10. Processing Jobs - Processing Control 10-15

Processing Jobs - Processing Control

* Invalid syntax on JCL statements in cataloged procedures invoked by any
scanned EXEC statements.

The system does not check for misplaced statements, for invalid syntax in JCL
subparameters, or for parameters and/or subparameters that are inappropriate
together.

Examples:

//JB16 JOB ,'M. CARLO',TYPRUN=SCAN
//TG ~ JOB RK988,SMITH,CLASS=S
//S1 EXEC PGM=JCLTEST

//S2 EXEC PGM=JSTTEST

Using IEFBR14 Program for Testing

IEFBR14 is a two-line program that clears register 15, thus passing a return code of
0, and then branches to the address in register 14, which returns control to the
system. If a step requests IEFBR14 instead of the program that the JCL actually
supports, the system does the following:

» Checks all the job control statements in the step for syntax.

» Allocates direct access space for data sets.

» Performs data set dispositions.

To test with IEFBR14, substitute IEFBR14 for the name of the program, as follows:
//stepname EXEC PGM=IEFBR14,...

Considerations when Using IEFBR14: Although the system allocates space for
data sets, it does not initialize the data sets. Therefore, any attempt to read from
one of these data sets will produce unpredictable results. Also, IBM does not
recommend allocation of multi-volume data sets while executing IEFBR14.

If you created a data set when testing with IEFBR14, the data set’s status in the DD
DISP parameter is old when you execute the actual program.

Because IEFBR14 does not open any data sets, a DD DISP parameter of CATLG
does not make the system catalog a data set, if one of the following is true:

» The DD statement requested a nonspecific tape volume.
» The DD statement requested a tape volume with dual density options, but the
DCB DEN subparameter did not specify the density.

* The DD statement was allocated to a tape volume with dual recording mode
options, but you did not code the DCB TRTCH subparameter.

When executing IEFBR14, if a DD DISP parameter specifies CATLG or UNCATLG,
the system issues an operator message to mount the volume. If it is not necessary
to mount the volume, code DEFER on the UNIT parameter of the DD statement.

Examples:

For testing:
//STEP1 EXEC PGM=IEFBR14,COND=(8,LE),TIME=2

For executing after testing:
//STEP1 EXEC PGM=WKLYRPT,COND=(8,LE),TIME=2

Using Nonstandard Processing
In a JES3 system, you can use nonstandard job processing in testing. Standard job
processing consists of the following standard scheduler functions:
Converter/interpreter service
Main service

10-16 0S/390 V2R10.0 MVS JCL User's Guide

Processing Jobs - Processing Control

Output service
Purge service

A nonstandard job uses one or more special processing functions in place of or in
addition to the standard functions or skips one or more standard functions. Specify
nonstandard processing by following the JOB statement with a JES3 //*PROCESS
statement for each processing function to be performed.

End the //*PROCESS statements with a /*ENDPROCESS statement or a JCL
statement.

Example:

//TESTA JOB ,'E. HARMANTAS'
//*PROCESS CI

//STEP1 EXEC PGM=NEWPROG
//DD28 DD SYSOUT=A
//DD29 DD *

(&ata)
/% '

This example asks for only the converter/interpreter service, Cl. The
converter/interpreter scans the job’s syntax for errors. The program will not be
executed or the job’s output processed. However, the job will be purged from the
system.

Dumping after Error
To request that the system dump the storage occupied by a failing program and
other storage needed to debug the program, code one of the following:

 SYSABEND, SYSMDUMP, or SYSUDUMP DD statement in the step to be
dumped. The system produces the requested dump if the step terminates
abnormally or if the step starts to terminate abnormally, but the system recovery
procedures allow the step to terminate normally.
If there are multiple failures in the same job step, only the last failure is reported.
Therefore, inspect the dump to gather information about any possible earlier
failures.

 DUMP in the BYTES, CARDS, LINES, or PAGES parameter of the JOB
statement. The system produces the dump requested by the dump DD statement
for the step if the system cancels the job because:

1. The job’s output exceeds the maximum specified on the BYTES, CARDS,
LINES, or PAGES parameter of the JOB statement, or

2. The job’s output exceeds the maximum output specified on the JES3 /*MAIN
statement, or the JES2 /*JOBPARM statement

3. The job’s output exceeds the maximum defined by the installation defaults
specified at initialization.

* DUMP in the BYTES, CARDS, LINES, or PAGES parameter on the JES3
/I*MAIN statement in the job and a SYSABEND, SYSMDUMP, or SYSUDUMP
DD statement in the step to be dumped. The system produces the dump
requested by the dump DD statement if JES3 cancels the job because the job’s
output exceeds the BYTES, CARDS, LINES, or PAGES limit or, if no limits are
given, the installation default limit for the job class.

If the dump is to be printed directly on a 3800 Printing Subsystem, the SYSABEND
or SYSUDUMP DD statement can request a high-density dump by specifying:

Chapter 10. Processing Jobs - Processing Control ~ 10-17

Processing Jobs - Processing Control

* FCB=STD3 to produce dump output at 8 lines per inch.
* CHARS=DUMP to produce 204-character print lines.

Example 1:
//51 EXEC PGM=TESTING
//DS1 DD SysouT=C

//SYSABEND DD SYSOUT=A,FCB=STD3,CHARS=DUMP
//INDS DD =

(data)
/* '
This example produces a high-density dump, if TESTING abnormally terminates.

Example 2:

//33JB JOB ,'J.T. HIGGINS',MSGCLASS=B
//*MAIN LINES=(50,DUMP)
/751 EXEC PGM=OLDPROG

/152 EXEC PGM=NEWPROG
//SYSUDUMP DD SYSOUT=D

If the first step exceeds 50,000 lines of output, JES3 cancels the job but does not
write a dump because the first step does not contain a dump DD statement. If the
combined output from S1 and S2 exceeds 50,000 lines, JES3 cancels the job and
writes a SYSUDUMP dump to the sysout data set for class D.

Example 3:

//J0B1 JOB ,'W. BAILEY',MSGCLASS=B,BYTES=(30,DUMP)
//STEP1 EXEC PGM=TESTPGM
//SYSUDUMP DD SYSOUT=D

If the first step exceeds 30,000 lines of output, the system cancels the job and
writes a SYSUDUMP dump to the sysout data set for class D.

10-18 05/390 V2R10.0 MVS JCL User's Guide

Chapter 11. Processing Jobs - Performance Control

The performance control described in this chapter is not supported in an APPC
scheduling environment, with the exception of the performance control described in

Table 11-1. Performance Control Task for Processing Jobs

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK

PROCESSING

JOBS JCL Statements JES2 JES3

JOB EXEC Other JCL Statements Statements
Performance Control
by job class CLASS CLASS on
assignment /"MAIN
by selection PRTY /*PRIORITY
priority
by performance |PERFORM |PERFORM
group
assignment
by IORATE on
I/O-to- /*MAIN
processing ratio

Performance Control by Job Class Assignment (Non-APPC)

The performance control described in this topic is not supported in an APPC
scheduling environment.

The system can balance the mix of jobs being executed based on the class and
priority assigned to each job. An installation should assign classes and priorities so
that jobs that compete for the same resources do not execute simultaneously.

A JES2 installation can have up to 36 job classes; a JES3 installation can have up
to 255 job classes. Two additional classes are reserved for started tasks and time
sharing users. An installation determines what types of job to place in each class. In
general, jobs with the same characteristics should be in the same class.

For example, an installation could identify separate classes for the following job
types:

* |/O-bound jobs.

* Processor-bound jobs.

» Jobs being debugged.

» Jobs using a particular resource.

Using these example job classes, the installation can assign job classes so that:

* |/O-bound jobs will execute at the same time as processor-bound jobs. This
multiprogramming helps both types of jobs complete faster.

» All programs that use tape drives will be in the same class, if the installation
contains only a few tape drives.

» All programs that use a data base will be in the same class, if the data base
must be accessed serially.

© Copyright IBM Corp. 1988, 2000 111

Processing Jobs - Performance Control

The installation should maintain a list of job classes and the type of jobs to be
assigned to each class.

In a JES2 system, assign a job to a job class by coding:
//jobname JOB acct,progname,CLASS=x

Note that in a JES2 environment the CLASS parameter is ignored for started tasks.

In a JES3 system, assign a job to a job class, which is part of a job class group, by
coding either of the following:

//jobname JOB acct,progname,CLASS=x
//*MAIN CLASS=x

Note that for started tasks in a JES3 environment all class related attributes and
functions are ignored except device fencing, SPOOL partitioning, and track group
allocation. Refer to the IQS/390 JES3 Initialization and Tuning Guida for more
information about class attributes and functions.

Examples

//MYJOB JOB ACCT24,BIRDSALL,CLASS=F
//*MAIN CLASS=H

Performance Control by Selection Priority (Non-APPC)

The performance control described in this topic is not supported in an APPC
scheduling environment.

Within a JES2 job class or a JES3 job class group, the system selects jobs for
execution in order by priority. The higher the priority number, the sooner the job is
selected. Jobs with the same priority are selected on a first-in first-out basis.

Priority for JES2 Jobs

In a JES2 system, there are a number of factors that determine the order in which a
particular job is selected for execution. Therefore, you cannot be assured that job
priority (based on the PRTY you assign a job) or the order of job submission will
guarantee that the jobs will execute in a particular order. If you need to submit jobs
in a specific order, contact your JES2 system programmer for advice based on how
your system honors such requests. (tializati i i
provides JES2 system programmer procedures concerning job queuing and how to
control job execution sequence.)

If a priority is not specified, JES2 uses installation algorithms to calculate the job’s
priority based on the execution time and the estimated amount of output. The
operator can assign a different priority or you can code one of the following:

//jobname JOB acct,progname,PRTY=x
/*PRIORITY x

JES2 also uses the execution time and output amount to monitor job execution time
and output. If you do not code these estimates, JES2 assumes installation defaults.
If your job exceeds the coded or assumed estimates, JES2 issues warning
messages to the operator or cancels the job, with or without a dump.

Use of Priority

11-2 0S/390 V2R10.0 MVS JCL User’s Guide

Processing Jobs - Performance Control

An installation can specify that jobs with shorter execution times and less output
should be assigned higher priorities. To make sure that programmers specify correct
times and output, the installation can instruct the operator to cancel jobs that
exceed the estimates.

Examples

//J0B10 JOB ,'FLO JONES',PRTY=14
/*PRIORITY 14

Priority for JES3 Jobs

Priority Aging

To assign a priority to your job, you can code the following:
//jobname JOB acct,progname,PRTY=x

The operator can change a job’s priority; see IQS/390 JES3 Commands.

Example
//JOB10 JOB ,'FLO JONES',PRTY=14

JES2 increases the priority of a job as it waits to be executed in the system. JES2
keeps raising the job’s priority until it is executed.

JESS3 increases a job’s priority based on the number of times the job is passed over
for selection. A job can be passed over because not enough devices are available
or because another job has a needed volume or data set or because not enough
storage is available.

The installation defines priority aging; you cannot specify it using JCL.

Performance Control by Performance Group (Non-APPC)

The performance control described in this topic is not supported in workload
management goal mode.

Performance groups determine how fast a job executes by controlling the rate at
which jobs in the group have access to the processor, the main storage, and the /O
channels. The installation defines the performance groups. Most performance
groups designate good processing rates under light system workloads. However,
when the system workload is moderate or heavy, some performance groups have
much lower processing rates than others.

The installation should define performance groups to meet the response
requirements of the jobs to be executed. The installation should maintain a list of
these groups.

To associate a job or job step with a performance group, code:

//jobname JOB acct,progname,PERFORM=n
//stepname EXEC PGM=x,PERFORM=n

Note: The PERFORM parameter regulates how a job executes as contrasted with

the JES3 //*MAIN IORATE parameter, which regulates how a job is
scheduled.

Chapter 11. Processing Jobs - Performance Control ~ 11-3

Processing Jobs - Performance Control

For more information on performance, see 0S/390 MVS Initialization and Tuning
Guidd and 10S/390 JES2 Initialization and Tuning Guidd or I0S/390 JES3
Initialization and Tuning Guidd.

Examples

//371 JOB ,'ANTHONY B.',PERFORM=52
//STEPC EXEC PGM=WHIT,PERFORM=4

Performance Control by I/O-to-Processing Ratio (Non-APPC)

The performance control described in this section is not supported in an APPC
scheduling environment.

To regulate how a job is scheduled by JES3, code an IORATE parameter:
//*MAIN TORATE=xxx

The IORATE parameter indicates if the job contains a low, medium, or high number
of 1/0 instructions compared to the number of processing instructions. JES3 uses
this value to determine the mix of jobs assigned to a processor: using this
parameter, JES3 balances processor-bound processing with I/O-bound processing.
A correct balance improves throughput.

Examples

//*MAIN IORATE=HIGH
//*MAIN IORATE=LOW
//*MAIN IORATE=MED

11-4 0S/390 V2R10.0 MVS JCL User’s Guide

Part 4. Tasks for Requesting Data Set Resources

This part describes how to create and access data sets. The task required to
request a data set is:

e |dentification

Other tasks can optionally be performed:
» Description

* Protection

» Allocation

* Processing control

* End processing

© Copyright IBM Corp. 1988, 2000

Part 4. Tasks for Requesting Data Set Resources

0S/390 V2R10.0 MVS JCL User’'s Guide

Chapter 12. Data Set Resources - Identification

Table 12-1. Identification Task for Requesting Data Set Resources

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
REQUESTING JCL Statements JES2 JES3
DATA SET Statements Statements
RESOURCES DD OUTPUT JCL Other JCL
Identification
of data set DSNAME UPDATE on
/I*MAIN
of in-stream data |* or DATA SYSIN /* or xx delimiter /I"DATASET
set DD DLM /["ENDDATASET
of data set on DSID
3540 Diskette
Input/Output Unit
through catalog JOBCAT DD
STEPCAT DD
through label label-type on
LABEL
by location on data-set-
tape sequence-
number on
LABEL
as TCAM QNAME
message data set
from or to TERM
terminal

Identification of Data Set

When creating a data set, assign a name to the data set in the DSNAME
parameter. The data set name is stored with the data set. When a later step or job
uses the data set, identify the data set in the DSNAME parameter; the system uses
the data set name to locate the data set on the volume.

How you code the DSNAME parameter depends on the type of data set and
whether it is permanent or temporary or it is copied from an earlier DD statement.

For information on allocation of data sets, refer to |‘Chapfnr 15 Data Set Resourced

H ”

Permanent Data Set

Identify a permanent data set by coding:
DSNAME=dsname
For a permanent data set
DSNAME=dsname(member)
For a member of a permanent PDS or PDSE
DSNAME=dsname(generation)
For a generation of a permanent generation data group
DSNAME=dsname(area)
For an area of a permanent indexed sequential data set

© Copyright IBM Corp. 1988, 2000 12-1

Data Set Resources - Identification

To create a permanent data set, assign it a name in the DSNAME parameter and a
disposition of KEEP or CATLG in the DISP parameter. The DISP subparameter
makes it a permanent data set. To use the data set, specify the data set's name in
the DSNAME parameter in a later step or job or a backward reference to the
creating DD statement in a later step in the same job.

Examples

//MYDS DD DSNAME=PLANA,DISP=(NEW,KEEP,DELETE),
// UNIT=3380,VOLUME=SER=167833,SPACE=(CYL, (10,5))

//DSC DD DSNAME=PLANB,DISP=(NEW,CATLG,DELETE),
// UNIT=3350,VOLUME=SER=275566,SPACE=(TRK, (20,5))

//SMSDS DD DSNAME=DESIGNB.PGM,DATACLAS=DCLAS1,STORCLAS=SCLAS1,
// DISP=(NEW,KEEP)

//0LDDS DD DSNAME=EXIST,DISP=0LD

Members of a PDS or PDSE

A partitioned data set (PDS) and a partitioned data set extended (PDSE) consist of
sequential records in independent groups, which are called members; each member
is identified by a member name. To add a member to a PDS or a PDSE, or to
retrieve a member, specify the data set name followed by the member name in
parentheses.

Example (PDS)

//NEWA DD DSNAME=RPRT(WEEK1),DISP=(NEW,CATLG,DELETE),
// UNIT=3380,VOLUME=SER=236688,SPACE=(CYL, (20,5,20))

//ADD1 DD DSNAME=RPRT (WEEK2) ,DISP=0LD
Example (PDSE)

//SMSDS DD DSNAME=RPRT (WEEK1) ,DATACLAS=DCLAS1,STORCLAS=SCLASI,
/] DISP=(NEW,KEEP)

//ADDSMS DD DSNAME=RPRT(WEEK2) ,DISP=0LD

Generations of a Generation Data Group

A generation data group is a collection of chronologically related data sets that have
the same data set name. To add a generation to a generation data group or retrieve
a generation, specify the generation data group name followed by the generation
number. A zero is the current generation of the group, a negative number (for
example, -1) is an older generation, a positive number (for example, +1) is a new
generation that does not exist yet.

Examples

//NEWGDS DD DSNAME=GDS(0),DISP=(NEW,CATLG,DELETE),
// UNIT=3380,VOLUME=SER=334455,SPACE=(CYL,20)

//OLDGDS DD DSNAME=GDS(-1),DISP=0LD

//NEWER DD DSNAME=GDS(+1),DISP=(NEW,CATLG,DELETE),
/] UNIT=3350,VOLUME=SER=222333, SPACE=(TRK, 15)

//ALLG DD DSNAME=GDS,DISP=0LD
//SMSGDG DD DSNAME=A.B.C(+1),DATACLAS=DGDG1,DISP=(NEW,KEEP)

12-2 0S/390 V2R10.0 MVS JCL Users Guide

Data Set Resources - Identification

Areas of an Indexed Sequential Data Set
An indexed sequential data set consists of three areas: index, prime, and overflow.

To create the data set, define each area by identifying the data set name followed
by the area name. The area name is INDEX, PRIME, or OVFLOW. To define the
data set on one DD statement, code DSNAME=dsname or
DSNAME=dsname(PRIME). To retrieve the data set, code only the data set name.

Examples

//NEWIS DD DSNAME=ISDS(INDEX),DISP=(NEW,CATLG,DELETE),

// UNIT=3350,VOLUME=SER=222333,SPACE=(CYL,5)
// DD DSNAME=ISDS(PRIME),DISP=(NEW,CATLG,DELETE),
// UNIT=3350,VOLUME=SER=222333,SPACE=(CYL,15)
// DD DSNAME=ISDS(OVFLOW),DISP=(NEW,CATLG,DELETE),
// UNIT=3350,VOLUME=SER=222333,SPACE=(CYL,10)

//0LDIS DD DSNAME=ISDS,DISP=0LD

Temporary Data Sets
A temporary data set is a data set that is created and deleted in the same job, and
is identified by coding one of the following:

DSNAME=&&dsname
For a temporary data set

DSNAME=&&dsname(member)
For a member of a temporary PDS or PDSE

DSNAME=&&dsnhame(area)
For an area of a temporary indexed sequential data set

No DSNAME parameter
For a temporary data set to be named by the system

Additionally, in a non-SMS environment only, the system treats any data set that is
created and deleted in the same job step as a temporary data set. For example, the
system treats a data set coded as:

DSN=A.REAL.DSN.NAME,DISP=(NEW,DELETE)
in a2 non-SMS environment as a temporary data set.

Only the job that creates a temporary data set has access to it to read and write
data and to scratch the data set.

SMS manages a temporary data set if (1) you specify a storage class (via the DD
STORCLAS parameter) or (2) an installation-written automatic class selection (ACS)
routine selects a storage class for the temporary data set.

The system generates a qualified hame for the temporary data set. For details
about the format of the name the system generates, see the description of the
DSNAME parameter in [QS/390 MVS ICL Referencs.

The time in the system-generated qualified name is the same for all temporary data
sets in a job. Therefore, if the same temporary data set name appears more than
once in a job, the system might create duplicate data set names. This would be a
JCL error, unless the data set is passed from one job step to another.

Chapter 12. Data Set Resources - Identification ~ 12-3

Data Set Resources - Identification

If the DISP parameter for a temporary data set specifies KEEP or CATLG, the
system changes the disposition to PASS and deletes the data set at job termination.
However, the system does not change the disposition for a data set when all of the
following are true:

* The data set resides on tape

* The data set is new

* The data set is not named in a DSNAME parameter

* The status in the DISP parameter is OLD or SHR

* The UNIT parameter contains DEFER

In this case, the system deletes the data set at job termination but tells the operator
to keep the volume for the data set.

Examples

//TEMPDS1 DD DSNAME=&8MYDS,DISP=NEW,UNIT=3350,
// SPACE=(CYL,20)

//TEMPDS2 DD DSNAME=&&DSA,DISP=(NEW,PASS),UNIT=3380,
// SPACE=(TRK, 15)

//TEMPSMS DD DSNAME=&&ABC,DATACLAS=DCLAS2,STORCLAS=TEMP1,DISP=NEW

Members of a Temporary PDS or PDSE

To add a member to a temporary partitioned data set (PDS or PDSE), or to retrieve
a member during the job, specify the data set’s temporary name and follow it with
the member name in parentheses.

Examples

//TEMPMEM DD DSNAME=&&DS1(MEM1),DISP=(NEW,PASS),
// UNIT=3380,SPACE=(CYL, (20,,2))

//GETMEM DD DSNAME=&&DS1(MEM1),DISP=0LD

Areas of a Temporary Indexed Sequential Data Set
To create a temporary indexed sequential data set and define any of its areas on a

DD statement, identify the data set’s temporary name followed by the area name.
To define the temporary data set on one DD statement, code DSNAME=&&dsname
or DSNAME=&&dsname(PRIME). To retrieve the temporary data set in the same
job, code DSNAME=&&dsname.

Examples

//TEMPIS ~ DD DSNAME=&&ISDS(INDEX),DISP=(NEW,PASS),

/! UNIT=3380,SPACE=(CYL,5)
/] DD DSNAME=&&ISDS(PRIME),DISP=(NEW,PASS),
/! UNIT=3380,SPACE=(CYL,20)
// DD DSNAME=&ISDS(OVFLOW) ,DISP=(NEW,PASS),
/! UNIT=3380,SPACE=(CYL,10)

//ANOTHER DD DSNAME=&&ISDS2,DISP=(NEW,PASS),UNIT=3350,
/1 SPACE=(CYL,10)

//0LDIS DD DSNAME=&&ISDS2,DISP=0LD

Copying the Data Set Name from an Earlier DD Statement

If a data set name is used several times in a job, copy it from the DD statement
that uses it first. It can be copied whether it is specified in the DSNAME parameter

12-4 0S/390 V2R10.0 MVS JCL Users Guide

Data Set Resources - Identification

or assigned by the system. Use copying to make changing data sets from job to job
easier and to eliminate having to assign names to temporary data sets. Copy a data
set name by coding:

//ddname DD DSNAME=+.ddname
//ddname DD DSNAME=+.stepname.ddname
//ddname DD DSNAME=+.stepname.procstepname.ddname

Example

//COPYDS DD DSNAME=+*.MYDS

Concatenating Data Sets

You can logically connect or concatenate (link together) sequential or partitioned
data sets (PDSs or PDSEs) for the duration of a job step. To concatenate data sets,
omit the ddnames from all the DD statements except the first. The data sets are
processed in the same sequence as the DD statements defining them.

Example

//INPUT DD DSNAME=FGLIB,DISP=(0LD,PASS)
// DD DSNAME=GROUP2,DISP=SHR

Identification of In-Stream Data Set (Non-APPC)

In-stream data sets are not supported in an APPC scheduling environment. If
coded, the system will syntax-check and ignore the DD statement that identifies the
in-stream data set. Subsequent statements will be processed as JCL statements
and might cause errors. The system ignores a delimiter statement that follows the
in-stream data set.

Entering Data Through the Input Stream

Enter data through the input stream by coding one of the following:

//ddname DD =*
//ddname DD DATA

A step can contain more than one in-stream data set. Use the DD DATA statement
when the data contains JCL statements.

If the statement that begins the data set contains a DLM parameter, end the
in-stream data set with a statement containing the two characters in the DLM

parameter. Otherwise, end the in-stream data set with either of the following
delimiters:

/*
Another JCL statement, if begun with a DD * statement

Naming an In-Stream Data Set

Code the DSNAME parameter on the DD * or DATA statement to assign the last
qualifier of the system-generated name to an in-stream data set.

Example 1

Chapter 12. Data Set Resources - Identification ~ 12-5

Data Set Resources - Identification

//DSIN DD =

idata)

//INSET DD DATA

idata)

/*
//THIRD DD *,DLM=ED

(data)

ED
Example 2

//DDIN DD DATA,DSNAME=8&PAYIN1

idata)
/% '

In-Stream Data Sets in a JES3 System

In a JES3 system, an in-stream data set can also begin with a /*DATASET
statement and end with a /"ENDDATASET statement. The //*DATASET statement
must start an in-stream data set that is used as input to a dynamic support program
(DSP).

Example

//J1 JOB 2233,'K.A. BRAND'

//S1 EXEC PGM=MYPROG

//*DATASET DDNAME=S1.MYDD4,J=YES
data

//*ENDDATASET

Identification of Data Set on 3540 Diskette Input/Output Unit

IBM 3540 diskette volumes can contain associated data sets. Associated data sets
are treated like in-stream data sets and are spooled in as SYSIN data sets. These
associated data sets are identified by coding a DSID parameter and, optionally, a
volume serial on a DD * or DD DATA statement in the input stream:

//ddname DD *,DSID=xxxx,VOLUME=SER=yyyyyy
To merge associated data sets into the job input stream, the stream containing the
DD statements for the associated data sets must be processed by the diskette

reader program. JES2 and JES3 do not support the DSID parameter.

For more information on the 3540 diskette, see 3540 Programmer’s Reference.

12-6 0S/390 V2R10.0 MVS JCL User’s Guide

Data Set Resources - Identification

Example

//ASSTDS DD DATA,DSID=3254,VOLUME=SER=778356

Identification through Catalog

A system or private catalog contains pointers to previously cataloged data sets. The
system uses these pointers to locate data sets when a DD statement requests an
old data set without UNIT or VOLUME parameters. For example:

//ddname DD DSNAME=dsname,DISP=0LD
Allocation and Unallocation of Catalog Volume

When the DSNAME parameter requests a cataloged data set, the system mounts
the catalog volume, if it is not already mounted. From the catalog, the system
obtains the pointer to the requested data set. Later, if the device on which the
catalog is mounted is needed for another volume, the system demounts the catalog
volume. The system assigns the catalog to the job step and performs disposition
processing for the catalog volume when the job step ends.

In the following cases, the system does not mount the catalog volume during
disposition processing of a job’s data sets:

* The job abnormally terminates and data sets with an abnormal termination
disposition of CATLG or UNCATLG were passed by a job step but not received
by a later step.

* The system unallocates a step’s data sets during warm start.

Using Private Catalogs

Private catalogs are defined on JOBCAT DD or STEPCAT DD statements. To define
a private catalog, use access method services, as explained in [0S/390 DFSMS]
Using Data Setd. The system searches a private catalog before a system catalog
when a JOBCAT or STEPCAT DD statement appears in the job or step and a DD
statement does not specify unit and volume serial information for a data set. A
JOBCAT catalog applies to each step of a job in which a STEPCAT catalog is not
specified.

With SMS, do not use a JOBCAT DD statement in a job that references an
SMS-managed data set and do not use a STEPCAT DD statement in a job step
that references an SMS-managed data set. SMS only accesses SMS-managed
data sets that are cataloged in a system catalog.

Note: In a JES3 system, a private catalog must be on a permanently resident
volume.

To locate a data set, the system searches catalogs in the following order:

1. Private catalog(s) specified in the current step in a STEPCAT DD statement and
statements concatenated to it.

2. If no private catalogs are specified for the job step, private catalogs specified in
the current job in a JOBCAT DD statement and statements concatenated to it.

3. A CVOL indicated by the first qualifier, if any, of the data set name.

4. A private catalog indicated by the first one to four qualifiers, if any, of the data
set name.

5. The system master catalog.

Chapter 12. Data Set Resources - Identificaton ~ 12-7

Data Set Resources - Identification

A private catalog can be either a VSAM user catalog or an integrated catalog facility
catalog.

Examples

//CATDS DD DSNAME=DS1,DISP=0LD
//ANOTH DD DSNAME=A.B.C,DISP=0LD
//JOBCAT DD DSNAME=PRIVCAT1,DISP=SHR
// DD DSNAME=CONCATZ2,DISP=SHR
//STEPCAT DD DSNAME=PRIVCATS,DISP=SHR

Identification through Label

The system uses data set labels to:
» Identify volumes and the data sets they contain.
» Store data set attributes.

A label is either standard or nonstandard. Standard labels can be processed by the
system; nonstandard labels must be processed by installation-written routines,
which the installation adds to the system.

Data sets on tape volumes usually have labels; these labels can be standard or
nonstandard. If labels are present, they precede each data set on the volume. Data
sets on direct access volumes always have labels; these labels must be standard.
Direct access labels are in the volume table of contents (VTOC) for the volume.

The label type subparameter tells the system the type of labels for the data set. The
label type is coded:

//ddname DD LABEL=(,label)...

The label types are:
SL: IBM standard labels

SUL: both IBM standard and user labels
For data sets on direct access, only SL or SUL can be specified. For SL or
SUL, or when the label type subparameter is omitted because the data set has
IBM standard labels, the system ensures that the correct tape or direct access
volume is mounted.

AL: ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3 labels
AUL: ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3 labels, and ISO/ANSI

Version 1 or ISO/ANSI/FIPS Version 3 user labels
For AL or AUL, the system ensures that the correct tape volume is mounted;
the tape must have an ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3 label.

NSL: nonstandard labels
For NSL, installation-provided nonstandard label processing routines must
ensure that the correct tape volume is mounted.

NL: no labels

BLP: bypasses label processing
For NL or BLP, the operator must ensure that the correct tape volume is
mounted. If you specify NL, the data set must not have any standard labels.

12-8 05/390 V2R10.0 MVS JCL User’s Guide

Data Set Resources - Identification

Use of BLP: BLP is not a label type, but a request that the system bypass label
processing. Use this specification for a blank tape or for overwriting a
seven-track tape at a parity or density different than its current parity or density.

LTM: bypasses a leading tape mark on unlabeled tape

Label Type for Cataloged or Passed Data Sets

For cataloged and passed data sets, the system does not keep label type
information. Therefore, when referring to a cataloged or passed data set that has
other than standard labels, code the LABEL type subparameter.

Nonspecific Volume Request

The label type subparameter can be specified for a nonspecific tape volume
request, that is, a DD statement with no volume serial numbers. If the operator
mounts a tape volume with a different label type, the system requests that the
operator mount another volume. But, if the specified label type is NL or NSL for the
nonspecific volume request and the operator mounts a volume with standard labels,
the system uses the volume if both of the following are true:

1. The expiration date of the existing data set on the volume is passed.

2. The existing data set on the volume is not password protected.

If you specify SL on a nonspecific volume request, but the operator mounts a tape

volume that contains other than IBM standard labels, the system asks the operator
to identify the volume serial number and the volume’s new owner before writing the
IBM standard labels. If the tape volume has ISO/ANSI Version 1 or ISO/ANSI/FIPS
Version 3 labels, the system asks the operator for permission to destroy the labels.

Specific Volume Request

If you specify SL on a specific volume request, that is, a DD statement that
specifies volume serial numbers, but the volume does not contain IBM standard
labels:

» If the mounted volume contains labels, the system rejects the volume and asks
the operator to mount the specified tape volume.

 If the mounted volume is not labeled, the system asks the operator whether to
reject the volume or write standard labels on it.

Examples

//DSF DD DSNAME=ALLAB,LABEL=(,AL),UNIT=3420,
// VOLUME=SER=223344,DISP=(NEW,CATLG)

//DSJ DD DSNAME=CATDS,DISP=0LD,LABEL=(,SUL)

Identification by Location on Tape

When placing a data set on a tape volume that already contains one or more data
sets, specify where the data set is to be placed, that is, whether the data set is to
be second, third, fourth, etc., on the volume. Code the data set sequence number
to position the tape:

//ddname DD LABEL=(data-set-sequence-number,label),...
//ddname DD LABEL=data-set-sequence-number,...

Chapter 12. Data Set Resources - Identificaton ~12-9

Data Set Resources - Identification

Data-Set-Sequence-Number with BLP

If you specify BLP for the label type, the system treats anything between tapemarks
as a data set. Therefore, if the tape actually has labels, code the
data-set-sequence-number subparameter to position the tape properly; the
subparameter must reflect all labels and data sets that precede the desired data
set. I0S/390 DESMS: Using Magnetic Taped illustrates where tapemarks appear.

Examples

//DDEX1 DD DSNAME=TAPEDS3,DISP=(NEW,KEEP),UNIT=3420,
// LABEL=(3,SL),VOLUME=SER=666555

//DDEX2 DD DSNAME=TAPEDS4,DISP=(NEW,KEEP),UNIT=3420,
// LABEL=(8,BLP),VOLUME=SER=223344

Identification as TCAM Message Data Set

To identify a data set as containing telecommunications access method (TCAM)
messages, code the following:

//ddname DD QNAME=procname
//ddname DD QNAME=procname.tcamname

The QNAME parameter refers to a TPROCESS macro instruction that defines a
destination queue for the messages. The parameter can also name a TCAM job to
process the messages.

Example

//EX1 DD QNAME=MACRO1.TJOB

Identification as Data Set from or to Terminal (Non-APPC)

The TERM parameter has no function in an APPC scheduling environment. If you
code TERM, the system will check it for syntax and ignore it.

In a job run in a TSO/E system, identify a data set as coming from or going to the
terminal in the JOB statement USER parameter by coding:

//ddname DD TERM=TS

In a background or batch job, the system treats the TERM=TS parameter as a
SYSOUT="* parameter if no other parameters are coded.

Example

//MYTSODS DD TERM=TS

12-10 0S/390 V2R10.0 MVS JCL User’s Guide

Chapter 13. Data Set Resources - Description

Table 13-1. Description Task for Requesting Data Set Resources

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
REQUESTING JCL Statements JES2 JES3
DATA SET Statements Statements
RESOURCES DD OUTPUT JCL Other JCL
Description
of status DISP
of data attributes - | DCB
by modeling AMP
DATACLAS
KEYLEN
DSNTYPE
KEYOFF
LRECL
RECFM
RECORG
LIKE
REFDD
of migration and | MGMTCLAS
backup

Description of Status

© Copyright IBM Corp. 1988, 2000

The process of securing control of data sets for a job is called data set integrity
processing. Data set integrity processing avoids conflict between two or more jobs
that request use of the same data set. For example, two jobs, one named READ
and another named MODIFY, both request data set FILE.

* READ wants only to read and copy certain records

* MODIFY deletes some records and changes other records

If both jobs use FILE concurrently, READ cannot be certain of the integrity of FILE
because MODIFY is changing records in the data set. MODIFY should have
exclusive control of the data set.

Indicate the type of control needed by coding the data set’s status:

//ddname DD DISP=(NEW,...
//ddname DD DISP=(OLD,...
//ddname DD DISP=(MOD,...
//ddname DD DISP=(SHR,...

For exclusive use of a data set, code:
* NEW: the data set is being created in this job step.
» OLD: the data set existed before this job step.

* MOD: the system first assumes that the data set exists. For an existing
sequential data set, MOD causes the read/write mechanism to be positioned
after the last record in the data set. The read/write mechanism is positioned after
the last record each time the data set is opened for output.

If the system cannot find volume information for the data set on the DD
statement, in the catalog, or passed with the data set from a previous step, the

13-1

Data Set Resources - Description

system assumes that the data set is being created in this job step. For a new
data set, MOD causes the read/write mechanism to be positioned at the
beginning of the data set.

Note: For a new generation of a generation data group (GDG) data set (where
(+n) is greater than 0), VOLUME=REF or VOLUME=SER can be coded.

For shared use of a data set, code:

» SHR: the data set existed before this job step and can be read by other
concurrent jobs.

Exclusive Control of a Data Set

When a job has exclusive control of a data set, no other job can use that data set
until completion of the last step in the job that refers to the data set. A job should
have exclusive control of a data set in order to modify, add, or delete records.

In some cases, you may not need exclusive control of the entire data set. You can
request exclusive control of a block of records by coding the DCB, READ, WRITE,
and RELEX macro instructions. See QS/390 DESMS: Uising Data Setd .

Shared Control of a Data Set

Several jobs can concurrently use a data set on a direct access device if they
request shared control of the data set. None of the jobs should change the data set
in any way.

If more than one step requests a shared data set, code SHR on every DD
statement that requests the data set, if it is to be used by concurrently executing
jobs.

Examples

//DD1 DD DSNAME=PERMDS,DISP=0LD
//DD2 DD DSNAME=8&TEMPDS,DISP=NEW
//DD3 DD DSNAME=GENDS (+1),DISP=(NEW,CATLG)

Data Set Integrity Processing

The system performs data set integrity processing once for each job, for the
following types of data sets:

¢ Permanent data sets
* Non-virtual I/O (VIO) temporary data sets

* Data sets with alias names, created with the access method services DEFINE
command; see:

I0S/390 DESMS Access Method Services for Catalogs

* Members of generation data groups.

The system does not perform data set integrity processing for subsystem data
sefts.

Data Set Integrity Processing for Permanent Data Sets

To secure control for all permanent data sets for the job, the system enqueues
each data set, marking the data set as requested by that job and noting the kind of

13-2 05/390 V2R10.0 MVS JCL User’s Guide

Data Set Resources - Description

control requested: shared or exclusive. The system assigns control of the data set
until completion of the last step in the job that refers to the data set.

A statement requesting exclusive control overrides any number of statements
requesting shared control. One of two methods can be used to request exclusive

control:

* DISP=NEW, DISP=MOD or DISP=0OLD on a JCL DD statement.

» DISP=NEW, DISP=MOD or DISP=0OLD on a dynamic allocation request,
including dynamic allocation requests that result from the use of certain utility
control statements.

For example, utility control statements that delete/scratch a data set will result in
exclusive use of that data set.

The job receives control of the data set if:
» Another job is not using the data set.

* Another job is using the data set but both the job requesting the data set and the
job using the data set request shared control and no exclusive requests are
pending.

The job does not receive control of a data set if:
* Another job is using the data set and that job has exclusive control.
» Another job is using the data set, with either exclusive or shared control, and this

job requests exclusive control.

» Another job is using the data set, with shared control, and yet another, earlier job
requests exclusive control.

If a job requests data sets that are not available, the system issues the message
‘JOB jjj WAITING FOR DATA SETS’ to the operator. The job waits until the required
data sets become available, unless the operator cancels the job.

When the system has secured control of all permanent data sets, it allocates and
unallocates resources for each step of the job. The job terminates after the system
has unallocated all resources for the last step in the job.

Data Set Integrity Processing for Other Data Sets

Non-VIO temporary data sets, data sets with alias names, and members of

generation data groups are reserved or enqueued for each step within the job. The
job receives control of the data set for that step in the same way as for permanent
data sets.

When each step terminates, the system releases control of any data sets that are
not used in any subsequent step of the job, except non-VIO temporary data sets,
data sets with alias names, or a member of a generation data group.

Summary of Data Set Integrity Processing
Table 13-2. Data Set Integrity Processing

Permanent data set requested
for:

Data set is currently in use:

Exclusive
control

Shared control

Data set is not
in use

Data set is previously requested

for:
Shared control | Exclusive

control

Chapter 13. Data Set Resources - Description ~ 13-3

Data Set Resources - Description

Table 13-2. Data Set Integrity Processing (continued)

Shared control

Exclusive control

Non-VIO temporary data set
requested for:

Shared control

Exclusive control

Shared control

Exclusive control

Data set with alias name
requested for:

Shared control

Exclusive control

GDG data set requested for:

Data set is currently in use:

Shared control

Request granted

Request granted
when data set
released

Request granted

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Request granted

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Request granted

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Exclusive
control
Request granted
when data set
released
Request granted
when data set
released

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Data set is not
in use

Request granted

Request granted

Request granted

Request granted

Request granted

Request granted

Request granted

Request granted

Data set is previously requested

for:
Shared control

Request granted

Request granted
when data set
released

Request granted

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Request granted

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Exclusive
control
Request granted
when data set
released
Request granted
when data set
released

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Request granted

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Description of Data Attributes

The system obtains information needed to read from and write to a data set from:
* The data control block (DCB).
» For a VSAM data set, from the access method control block (ACB).
* With SMS, from the data class of the data set.

* With SMS, from a model data set.

In Data Control Block (DCB)

The system obtains data control block information from the following sources, in
override order:

* The DCB macro instruction, in assembler language programs, or file definition

13-4 0S/390 V2R10.0 MVS JCL User’s Guide

statements or language-defined defaults in programs in other languages.

Data Set Resources - Description

* The DCB subparameters on the DD statement.

//ddname DD DCB=subparameter,...
//ddname DD DCB=(subparameter,subparameter,...),...

* The data set label.

Therefore, the system ignores a value in a DCB subparameter on the DD statement
if the data control block already contains the value. The system ignores a value in
the data set label if the data control block already contains the value from the
program or a DD DCB subparameter.

Note: When concatenated data sets are involved, the DCB is completed based on

the type of data set and how the processing program uses the data set. See
lbs/390 DESMS: Ilcing Data Setd for more information.

DCB Values from Cataloged Data Sets

The DD statement DCB parameter can ask the system to copy certain values from
the data set label of a cataloged data set, by coding:

//ddname DD DCB=dsname,...
//ddname DD DCB=(dsname,subparameter,...)...

The system copies the DSORG, RECFM, OPTCD, BLKSIZE, LRECL, KEYLEN,
and RKP values from the label. If any of these values are coded in subparameters
following the dsname, the system uses the coded values.

DCB Values from Earlier DD Statements

The DD statement DCB parameter can ask the system to copy all subparameters
from the DCB parameter in an earlier DD statement, by coding a backward
reference to the earlier statement:

//ddname DD DCB=*.ddname

//ddname DD DCB=*.stepname.ddname
//ddname DD DCB=x.stepname.procstepname.ddname

Examples

//S1 EXEC PGM=ANYA

//DD1 DD DSNAME=ABC ,DCB=(RECFM=FB, LRECL=80,BLKSIZE=960),
// DISP=(NEW,CATLG,DELETE),UNIT=3380, VOLUME=223344,

// SPACE=(CYL, (30,10))

//S2 EXEC PGM=ANYB

//DD2 DD DSNAME=COPIER1,DCB=ABC

//S3 EXEC PGM=ANYC

//DD3 DD DSNAME=COPIER2,DCB=*.S1.DD1

In Access Method Control Block (ACB)
The system obtains access method control block information for VSAM data sets

from the following sources, in override order:
* The AMP subparameters on the DD statement.

//ddname DD AMP=(subparameter),...
//ddname DD AMP=('subparameter,subparameter,...'),...

» With SMS, the DD statement parameters KEYLEN, KEYOFF, LRECL, and
RECORG.

* The ACB, EXLST, or GENCB macro instructions in assembler language
programs.

* The catalog entry for the data set.

Chapter 13. Data Set Resources - Descripton ~ 13-5

Data Set Resources - Description

Therefore, the system ignores a value in a program macro instruction if the DD
AMP parameter supplies the value. The system ignores a value in the data set
catalog entry if the access method control block already contains the value from a
DD AMP subparameter or a macro instruction in the program.

Note: The override order for ACB values is different from the override order for
DCB values.

Examples

//DD4 DD DSNAME=ANYVSAM1,AMP=('BUFND=4,BUFNI=4,STRNO=2"'),
// DISP=(NEW,CATLG,DELETE) ,UNIT=3380,VOLUME=556677,
// SPACE=(TRK, (200,50))

In Data Class
With SMS, the system obtains information about the attributes of a data set from

the data class for the data set.

In many cases, the attributes defined in the data class selected by an
installation-written automatic class selection (ACS) routine are sufficient for the data
sets you create with DD statements.

However, you can specify the name of a data class on the DATACLAS parameter
for a new data set. (Note that an ACS routine can override the data class that you
specify.)

The storage administrator at your installation defines the names of data classes and
their data set attributes. To view a list of data class names and their attributes, use
the Interactive Storage Management Facility (ISMF).

You can also override individual data set attributes. Any data set attributes you
specify on the following parameters override the corresponding attributes in the data
class for the data set.

RECORG (record organization) or RECFM (record format)

LRECL (record length)

KEYLEN (key length)

KEYOFF (key offset)

DSNTYPE (data set type, PDS or PDSE)

AVGREC (record request and space quantity)

SPACE (average record length, primary, secondary, and directory quantity)

RETPD (retention period) or EXPDT (expiration date)

VOLUME (volume-count)

Examples

//DD5 DD DSNAME=DESIGNA.PGM,DISP=(NEW,KEEP)
//DD6 DD DSNAME=DESIGNB.PGM,DATACLAS=PGM5,DISP=(NEW,KEEP)
//DD7 DD DSNAME=DESIGNC.PGM,DATACLAS=PGM5,LRECL=1024,DISP=(NEW,KEEP)

From Model Data Set
With SMS, use the LIKE or REFDD parameter to copy data set attributes from a

model data set:

* The LIKE parameter copies the attributes of an existing cataloged data set to the
new data set that you are defining on a DD statement.

» The REFDD parameter copies the attributes of a data set that is defined in a
previous DD statement to the new data set that you are defining on a DD
statement.

13-6 0S/390 V2R10.0 MVS JCL User’s Guide

Data Set Resources - Description

Any data set attributes you specify on the DD statement that defines the new data
set override the corresponding attributes copied from the model data set.

Examples

//DDEX DD DSNAME=DESIGN.EXMP,DISP=0LD

//DD8 DD DSNAME=DESIGNE.PGM,LIKE=DESIGN.EXMP,DISP=(NEW,KEEP)
//DD9 DD DSNAME=DESIGNF.PGM,LIKE=DESIGN.EXMP,LRECL=1024,

/] DISP=(NEW,KEEP)

//DD10 DD DSNAME=DESIGNG.PGM,DATACLAS=DCLAS10,DISP=(NEW,KEEP)
//DD11 DD DSNAME=DESIGNH.PGM,REFDD=+.DD10,LRECL=1024,

/] DISP=(NEW,KEEP)

Migration and Backup (with SMS)

For an SMS-managed data set (one with a storage class assigned), the system
handles the migration and backup of the data set based on the attributes defined in
the management class for the data set.

In many cases, the attributes defined in the management class selected by an
installation-written automatic class selection (ACS) routine are sufficient for the data
sets you create with DD statements.

However, you can specify the name of a management class on the MGMTCLAS
parameter for a new SMS-managed data set. (Note that an ACS routine can
override the management class that you specify.)

The storage administrator at your installation defines the names of management
classes and their attributes. To view a list of management class names and their
attributes, use the Interactive Storage Management Facility (ISMF).

Note that you cannot override any of the attributes defined in the management
class for the data set.

Examples

//DD8 DD DSNAME=DESIGND.PGM,DISP=(NEW,KEEP)
//DD9 DD DSNAME=DESIGNE.PGM,MGMTCLAS=MCLASA,DISP=(NEW,KEEP)

Chapter 13. Data Set Resources - Description 13-7

Data Set Resources - Description

13-8 05/390 V2R10.0 MVS JCL User’s Guide

Chapter 14. Data Set Resources - Protection

Table 14-1. Protection Task for Requesting Data Set Resources

ISO/ANSI/FIPS
Version 3 tapes

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
REQUESTING JCL Statements JES2 JES3
DATA SET Statements Statements
RESOURCES DD OUTPUT JCL Other JCL
Protection
through RACF PROTECT
SECMODEL
for ACCODE

by passwords

PASSWORD and
NOPWREAD on
LABEL

of access to
BSAM and BDAM
data sets

IN and OUT on
LABEL

Protection through RACF

To ask for RACF protection, code:

//ddname DD PROTECT=YES,...

or, with SMS:

//ddname DD SECMODEL=profile-name,...

Protection with the PROTECT Parameter

Through the PROTECT parameter, RACF can protect the following:

* A data set on a direct access volume

* A data set on a tape volume with labels, that is:

LABEL=(,SL)
LABEL=(,SUL)
LABEL=(,AL)
LABEL=(,AUL)

LABEL=(,NSL) if the installation provides support

LABEL=(,SL)
LABEL=(,SUL)
LABEL=(,AL)

LABEL=(,AUL)
LABEL=(,NSL)
LABEL=(,NL)

LABEL=(,BLP)
LABEL=(,LTM)

» A tape volume with or without labels, that is:

© Copyright IBM Corp. 1988, 2000

For more information, see I0S/390 SecureWay Security Server RACFE Security
B < i,

1441

Data Set Resources - Protection

Examples

//TAPE2 DD DSNAME=NEWDS1,PROTECT=YES,DISP=(NEW,KEEP),
// VOLUME=(,,1,2,SER=(223344,556677)),
// UNIT=(3400-5,2),LABEL=(,SUL)

//DISKDS DD DSNAME=NEWDS2,PROTECT=YES,DISP=(NEW,CATLG,KEEP),
// VOLUME=SER=223344,UNIT=3380

Protection with the SECMODEL Parameter

With SMS, RACF can, through the SECMODEL parameter, protect a data set
created under SMS.

You specify the name of a RACF data set profile on the SECMODEL parameter
when you define a new data set. Use the SECMODEL parameter when you want to
use a specific data set profile for a new data set rather than using your user/group
default data set profile.

The data set profile contains information such as the name of the owner of the
profile, a list of RACF users or groups authorized to access the data set, the access
attempts that are logged, and other RACF-related information.

For more information, see 0S/390 SecureWay Security Server RACE Security
|Admwstratacs_6mdd and 10S/390 SecureWay Security Server RACE Command
Language Referenca.

Example

//SMSDS DD DSNAME=NEWDS5.PGM, SECMODEL=(GROUP1.PROTA) ,DISP=(NEW,KEEP)

Protection for ISO/ANSI/FIPS Version 3 Tapes

To control access to an ISO/ANSI/FIPS Version 3 tape data set, code:
//ddname DD ACCODE=access-code,...

The system must contain an installation-written file-access exit routine. This routine
verifies that the ACCODE parameter specifies the correct code for an existing data
set and, therefore, can use a data set.

Examples

//DD1 DD DSNAME=NEWDS,ACCODE=F,LABEL=(,AL),UNIT=3380,
// VOLUME=SER=998877,DISP=(NEW,CATLG, KEEP)

//DD2 DD DSNAME=0LDDS,ACCODE=J,LABEL=(,AL),UNIT=3380,
// VOLUME=SER=665544,DISP=0LD

Protection by Passwords

Use the PASSWORD subparameter of the LABEL parameter to specify a password
to be used for protecting a data set.

Note that SMS ignores the PASSWORD subparameter for SMS-managed data sets.

To protect a data set with a password, code:

14-2 0S/390 V2R10.0 MVS JCL Users Guide

Data Set Resources - Protection

//ddname DD LABEL=(data-set-sequence-number,label,PASSWORD)
//ddname DD LABEL=(data-set-sequence-number,,PASSWORD)
//ddname DD LABEL=(,,PASSWORD)

To use a password-protected data set, code:

//ddname DD LABEL=(data-set-sequence-number,label,PASSWORD)
//ddname DD LABEL=(data-set-sequence-number,,PASSWORD)

//ddname DD LABEL=(,,PASSWORD)
//ddname DD LABEL=(data-set-sequence-number,label,NOPWREAD)

These subparameters mean the following:

« PASSWORD: The data set cannot be read from, written to, or deleted by another
job or step unless the operator supplies the system with the correct password.

* NOPWREAD: The data set cannot be written to or deleted by another job or step
unless the operator supplies the system with the correct password. However, the
data set can be read without the password.

To protect a data set with a password, specify PASSWORD when the data set is
created. Password-protected data sets must have standard labels, either IBM
standard or ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3 labels.

Examples

//EX1

DD DSNAME=ABC,DISP=(NEW,CATLG,DELETE),

// LABEL=(,SL,PASSWORD) ,UNIT=3400-5,VOLUME=223344

//EX2 DD DSANME=DEF,DISP=0LD,LABEL=(,SL,NOPWREAD)

Protection of Access to BSAM or BDAM Data Sets
The LABEL parameter can modifi the data set processing through the IN and OUT

subparameters, as indicated in

specifies the data set processing as:

» When using the basic sequential access method (BSAM): INOUT, OUTIN,
OUTINX, or EXTEND

* When using the basic direct access method (BDAM): UPDAT

The LABEL subparameters are coded:

, if the assembler OPEN macro instruction

//ddname DD LABEL=(data-set-sequence-number,label,PASSWORD,IN)
//ddname DD LABEL=(,label,PASSWORD,OUT)
//ddname DD LABEL=(,,NOPWREAD,IN)
//ddname DD LABEL=(,,,0UT)

Table 14-2. Processing with DD LABEL Subparameter IN or OUT

OPEN Macro LABEL Program Processing of Data Set Required Password

Parameter Subparameter

INOUT (BSAM) IN Read records (If the program tries to | Read password, if data set protected

UPDAT (BDAM) write to the data set, the system with PASSWORD; write password, if
gives control to the error analysis data set protected with NOPWREAD
(SYNAD) routine.)

OUTIN (BSAM) ouT Write records (If the program tries to | Write password, if data set protected

UPDAT (BDAM)

read the data set, the system gives
control to the error analysis (SYNAD)
routine.)

with PASSWORD or NOPWREAD

Chapter 14. Data Set Resources - Protection

14-3

Data Set Resources - Protection

Table 14-2. Processing with DD LABEL Subparameter IN or OUT (continued)

EXTEND (BSAM)

OPEN Macro LABEL Program Processing of Data Set Required Password
Parameter Subparameter
OUTINX (BSAM) |[OUT Add records to end of data set (If the | Write password, if data set protected

program tries to read the data set, with PASSWORD or NOPWREAD
the system gives control to the error
analysis (SYNAD) routine.)

Other Uses of the LABEL IN Subparameter

You can also use the IN subparameter to avoid operator intervention when reading
a data set that has an unexpired expiration date.

Data Set Processing with LABEL OUT Subparameter
When the OPEN macro instruction specifies OUTINX or EXTEND and the DD
LABEL contains an OUT subparameter, the system adds records to the end of the

data set regardless of the DISP parameter of the DD statement.

Examples

//EX1 DD DSNAME=D.E.F,DISP=0LD,LABEL=(,,NOPWREAD,IN)
//EX2 DD DSNAME=EXIST,DISP=MOD,LABEL=(,,PASSWORD,OUT)

14-4 0S/390 V2R10.0 MVS JCL Users Guide

Chapter 15. Data Set Resources - Allocation

Allocation is the process the system uses to map requests for data sets to available
devices and volumes. This chapter contains guidance information about the
allocation of data set resources. [lahle 15-1 shows the relationships between the
allocation of resources associated with data sets, such as devices and volumes,
and the appropriate JCL or JES statements and parameters.

Table 15-1. Allocation Task for Requesting Data Set Resources

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
REQUESTING JCL Statements JES2 JES3
DATA SET Statements Statements
RESOURCES DD OUTPUT JCL Other JCL
Allocation
of device UNIT CLASS on JOB SETUP and
STORCLAS (JESS only) CLASS on
/I*MAIN
of tape or direct VOLUME EXPDTCHK and
access volume STORCLAS RINGCHK on
/I*MAIN
of direct access SPACE
space AVGREC
DATACLAS
of virtual 1/0 UNIT
DSNAME=
temporary data
set
with deferred DEFER on UNIT
volume mounting
with volume /*SETUP
premounting
dynamic DYNAMNBR on
EXEC

This chapter includes the following topics related to the allocation of data set
resources.

° i ” _

° g ” _

. 3 ”

Some of these topics include sections that describe the topic from the perspective
of whether the resource is SMS-managed or non-SMS-managed.

© Copyright IBM Corp. 1988, 2000 15-1

Data Set Resources - Allocation

In this chapter, SMS-managed and system-managed are used interchangeably to
describe resources that the storage management subsystem (SMS) manages, and
with SMS indicates information that applies when SMS is installed and active.

Data sets on system-managed tape library volumes exhibit both system-managed
and non-system-managed characteristics. When necessary, datasets on a
system-managed tape volume are distinguished from system-managed DASD
data sets. Otherwise, the term system-managed data sets refers to both datasets
on a system-managed tape volume and system-managed DASD data sets.

Allocation of Device

The device that a data set resides on is determined as follows:

* For SMS-managed data sets, by the storage class for the new data set,
specified on the STORCLAS parameter of the DD statement or selected by the
installation-written automatic class selection (ACS) routine for the new data set.

* For non-SMS-managed data sets, by the UNIT parameter, specified on the DD
statement for the new data set, or, with SMS, by the SMS default unit, when the
UNIT parameter is not specified.

Device Allocation for SMS-Managed Data Sets

For an SMS-managed data set, SMS obtains information about the device to be
used for the data set based on the storage class assigned for the data set.

In many cases, the device used by the storage class that an ACS routine selects is
sufficient for the data sets you create with DD statements.

You can, however, specify the name of a storage class on the STORCLAS
parameter for a new SMS-managed data set. (Note that an ACS routine can
override the storage class that you specify.)

The storage administrator at your installation defines the names of storage classes
and their attributes. To view a list of storage class names and their attributes, use
Interactive Storage Management Facility (ISMF).

To let an ACS routine select a storage class for a new data set, omit the
STORCLAS parameter; for example:

//DD5 DD DSNAME=DESIGNA.PGM,DISP=(NEW,KEEP)

To specify a specific storage class for a new data set, code the STORCLAS
parameter; for example:

//DD6 DD DSNAME=DESIGNB.PGM,STORCLAS=STOR55,DISP=(NEW,KEEP)

The system catalogs new permanent system-managed DASD data sets at
allocation. The system catalogs datasets on a system-managed tape volume during
unallocation processing, according to DISP parameters on DD statements.

To retrieve an existing data set, you do not need to code the STORCLAS
parameter; for example:

//DD7 DD DSNAME=DESIGNB.PGM,DISP=MOD
If you specify the UNIT parameter for an SMS-managed data set, the system

generally ignores the parameter. There are, however, several cases when the
system uses the information specified on the UNIT parameter:

15-2 0S/390 V2R10.0 MVS JCL User’s Guide

Data Set Resources - Allocation

* For data sets on a system-managed tape volume, the system ignores the device
type, device number, and group name subparameters of the UNIT parameter but
honors all its other subparameters. For example, it uses the unit-count
subparameter to allocate the specified number of units.

* For system-managed DASD data sets, the system honors the unit-count
subparameter but ignores all other subparameters on the UNIT parameter. For

further information see the

manual.

Device Allocation for Non-SMS-Managed Data Sets

On the DD statement for a non-SMS-managed data set, code a UNIT parameter to
indicate the device on which the data set resides or is to be written.

With SMS, you do not need to code the UNIT parameter if your installation has
defined a system default unit to use for new data sets. Check with your storage

administrator.

The UNIT parameter can specify:

* A particular device:

//ddname DD UNIT=device-number,...
» A type of device, such as a 3350 direct access device or a 1403 printer:
//ddname DD UNIT=device-type,...
» A group of devices, such as DISK, to indicate all direct access devices in the

system:

//ddname DD UNIT=group-name,...

The status of a device affects whether the system can allocate it or not. See

Table 15-2. Effect of Device Status on Allocation

Status Device Type

Direct Access |Tape Printer Punch Graphic Teleprocessing
Online Eligible for allocation
Offline Eligible for allocation when the operator brings the device online Eligible for

allocation when at
least one path to
the device is
online

Pending Unload

Eligible for allocation when the
volume is specifically requested

Not applicable

Pending Offline

Eligible for allocation when the
operator selects the device in
response to message IEF238D or
when the operator brings the device
online.

Eligible for allocation when the
operator selects the device in
response to message |IEF238D or
when the operator brings the device
online.

Not applicable

Specifying Device Number
The device number is a 3-digit or 4-digit hexadecimal number assigned to the
device when it is installed. In JCL statements, always precede a 4-digit number with
a slash (/). A 3-digit number can be specified with or without a slash.

A 3-digit device number can be specified in two formats, where h is a hexadecimal

digit:

Chapter 15. Data Set Resources - Allocation

15-3

Data Set Resources - Allocation
« 3-digit format: hhh or /hhh
+ 4-digit format: /0hhh

Note that the slash before a 4-digit device number distinguishes it from a device
type, which is also 4 digits, but cannot contain a slash or be preceded by a slash.

For example, UNIT=/3490 is the device number for a specific device.

Do not specify a device by its number unless absolutely necessary. When you
specify a device number, the system can assign only that specific device.
Specifying a device number will delay a job if another job is using the device.
Specifying Device Type

Requesting a device type allows the system to assign any available device of that

type. For example, UNIT=3350 indicates that you want the system to assign any
available 3350 Direct Access Storage device. For more information on specifying

device types, see I0S/390 HCD Planning.

Specifying Group Name

During system initialization, the installation can define group names for a group of
devices. The devices in a group may or may not all be the same type. Requesting a
group name allows the system to assign any available device in the group. For
example, if the group named DISK includes 3350 and 3380 Direct Access Storage
devices, the system assigns an available 3350 or 3380 device when UNIT=DISK is
coded. If the group named 3350A includes three particular 3350 devices, the
system assigns one of these 3350 devices when UNIT=3350A is coded.

Groups with Several Types of Devices

If the group contains more than one type of device and the DD statement requests
more than one device, the system allocates devices of the same type from the
group. For example, if the group named TAPE includes both 3400-5 and 3400-6
devices and the DD statement specifies UNIT=(TAPE,2), the system assigns either
two 3400-5s or two 3400-6s. If the system does not have enough devices of one
type to satisfy the request, the system terminates the job.

If a group contains more than one type of device, do not code the group name
when requesting an existing data set or a specific volume. The system may assign
one type of device while the data set resides on another type. For example, if
SYSSQ contains all tape and direct access devices, do not code UNIT=SYSSQ for
an existing data set on tape; the system might assign a direct access device.

Groups with Devices with Special Features

This rule also applies if the data set resides on a 3348 Model 70F Data Module and
the group name includes 3340 drives with and without the Fixed Head Feature. The
3348 Model 70F must be assigned to a 3340 with the feature. For more information
on the Fixed Head Feature, see the IBM 3340 Disk/Storage - Fixed Head Feature
User’s Guide.

If a nonspecific volume request requires more than one tape device from a group

that contains both single and dual density tape drives, the system assigns the
devices so that the single density drive is the first one used. The default density is

15-4 0S/390 V2R10.0 MVS JCL User’s Guide

Data Set Resources - Allocation

the density of the single density drive. The operator may be requested to mount the
volumes in a different order than assigned by the system.

Concurrent Allocation of Devices

Only direct access devices can be allocated to different jobs executing concurrently.
Teleprocessing equipment cannot be allocated more than once in the same job
step. If a printer, punch, teleprocessing equipment, or graphics device is designated
as a console, it cannot be allocated to a job.

Allocating a Teleprocessing Device With a Group Name

If you request that the system allocate one or more lines of a line group by using a
group name, the system attempts to allocate the lines within the line group, starting
with the lowest teleprocessing (TP) line address and continuing in ascending order.
If the first eligible line in the line group is already allocated, the system fails the
request to allocate from that line group.

Note: A group name is called an esoteric name in Hardware Configuration
Definition (HCD) terminology.

Definition of UNIT Parameters in System Initialization

The installation describes each device to the system during system initialization.
During this process, the installation defines the device types and group names to be
coded in the DD UNIT parameter.

The installation should maintain a list of the device types and group names. For

more information, see [QS/390 HCD Planning.

gpecifying Device for Output Data Set (Non-SMS-Managed Data
ets

To pri?ﬂ or punch a data set without using the job entry subsystem output service,
specify the printer or punch in the UNIT parameter on the DD statement for the
data set. The system allocates the device, if available, exclusively to the job; jobs
cannot share output devices. Data management routines write the output from the
program to the specified device.

Sending output through the job entry subsystem to a sysout data set is usually
more efficient. JES uses the printers and punches for many jobs without intermixing
output.

Allocation with Deferred Volume Mounting

A step can include a data set that the program might not use. To ask the system
not to mount the volume for the data set until the data set is opened, code:

//ddname DD UNIT=(xxxx,,DEFER),...
Deferred mounting can save the operator time.

Example
//MYDS DD DSNAME=DATA5,UNIT=(TAPE,,DEFER)

Note: You can also use deferred mounting for SMS-managed data sets.

Chapter 15. Data Set Resources - Allocation ~ 15-5

Data Set Resources - Allocation

Requesting More than One Unit for Non-System-Managed Data

Sets and Data Sets on a System-Managed Tape Volume
For faster processing, request several units for a multivolume data set or for a data

set that may require additional volumes. When each volume is on its own device,
step execution is not halted while the operator demounts and mounts volumes.

Always request several units when the data set resides on more than one
permanently resident or reserved volumes or may be extended to a new volume
during step execution. Permanently resident and reserved volumes cannot be
demounted in order to mount a new volume.

Request multiple units by:
» Coding the unit count subparameter:
//ddname DD UNIT=(device,unit-count),...

* Requesting parallel mounting when the VOLUME parameter requests more than
one volume in the volume count parameter or in more than one serial number:
//ddname DD UNIT=(device,P),VOLUME=(,,,volume-count)

//ddname DD UNIT=(device,P),
// VOLUME=SER=(serial-number,serial-number,...)

Number of Devices Allocated for Non-System-Managed Data Sets
and Data Sets on a System-Managed Tape Volume

The system assigns volumes and devices for a job step by calculating the following:
* The maximum number of volumes per DD statement

* The maximum number of devices per DD statement

* The number of devices for the step

Volumes Required per DD Statement
See L i - _

Devices Required per DD Statement

The maximum number of tape devices or direct access devices required to satisfy
any DD statement is the unit count in the UNIT parameter except when volume
affinity is present. If volume affinity is present, the number of devices might be more
than the unit count in the UNIT parameter. For more information, see

However, if the UNIT parameter also specifies P, for parallel mount, the system
uses the greatest of the following numbers to determine how many devices and
volumes to allocate:

* Unit-count in the UNIT parameter

» Volume-count specified in the VOLUME parameter

* Number of serial numbers implicitly or explicitly specified

* With SMS, volume-count in the data class

The number of devices is affected by the DD statement parameters as follows:
DD Statement Specifies System Action

UNIT=AFF The system obtains the device requirements from
the referenced DD statement. All of the devices
used for the referenced DD statement are shared
with the referring statement’s data set.

Generation data group (GDG)
The system determines the number of devices
needed by totaling the devices needed for each

15-6 0S/390 V2R10.0 MVS JCL User’s Guide

Data Set Resources - Allocation

generation data set. Each generation data set is
handled as a single request.

VSAM data set The system determines the number of devices
needed based on the device/volume configuration
of the data set. If the data set is on more than one
type of device, the system determines the total
number of devices required and allocates them.
The system may override the unit count or parallel
mounting, if specified.

Unit name that includes different device types
The system allocates devices of the same type.

Devices Assigned per Step
The number of devices assigned for a job step is not necessarily the sum of the

device requirements for each DD statement.

The following tend to reduce the total devices assigned for a step:

* A volume can be allocated to only one device. Therefore, when more than one
DD statement asks for the same volume, the system allocates the same volume
on the same device.

* Requests for direct access space on public and/or storage volumes can be
allocated to the same volume. Therefore, when more than one DD statement
requests such space, the system can allocate the same volume on the same
device.

* Requests for the same public tape volume are allocated to that volume.
Therefore, if a DD statement requests a public tape and specifies
VOLUME=REF, the system can allocate the same volume on the same device.

The following tend to increase the total devices assigned for a step:

» A permanently resident or reserved volume cannot be demounted. Therefore, the
system assigns a permanently resident or reserved volume to its own device, on
which it is mounted. The volume is assigned to its own device even if the DD
statements specify that the device was to be shared with other volumes.

» A direct access volume is requested by more than one DD statement in a step;
the volume is shared by the data sets. The system assigns that volume to a
device and does not assign any other volumes to that device, even if the DD
statements specify that the device was to be used for other volumes.

* The system allocates additional devices for a VSAM data set, if the data set
resides on more than one type of device.

» The system allocates a direct access device for a private catalog, if it is
associated with and/or used to retrieve volume information about a requested
data set.

» For a generation data group (GDG), the system may have to assign additional
devices to satisfy the device type needs for each generation data set in the
GDG.

» When DD statements request conflicting device assignments for a tape volume,
the system assigns the volume involved in the conflict its own device. For
example:

//DD1 DD UNIT=2400,VOLUME=SER=(V1,V2)
//DD2 DD UNIT=2400,VOLUME=SER=(V2,V3)

Chapter 15. Data Set Resources - Allocation 15-7

Data Set Resources - Allocation

Volume serial V2 has conflicting device assignments. Therefore, the system
assigns the three volumes to three devices. If the DD2 had requested unit affinity,
UNIT=AFF=DD1, the system would have assigned only one device to all three
volumes.

Examples for Non-System-Managed Data Sets and Data Sets on
a System-Managed Tape Volume
Example 1

//TEST ~ JOB 5675, 'DEPT. 25'

//STEP1 EXEC PGM=Al

//D1 DD DSNAME=A01DD1,DISP=(,PASS),UNIT=3330,
// SPACE=(TRK,1),VOLUME=SER=333001

//STEP2 EXEC PGM=A2

//D2 DD DSNAME=LIB1,DISP=0LD,UNIT=3340,

/! VOLUME= (PRIVATE, SER=123456)

//D3 DD DSNAME=ABC,DISP=(OLD,KEEP),UNIT=AFF=D2,

/] VOLUME=SER=777777

//D4 DD DSNAME=TAPE,DISP=0LD,UNIT=(3420-5,P,DEFER),
// VOLUME=SER=(342001,342002,342003,342004,342005)
//D5 DD DSNAME=DISK,DISP=(SHR,KEEP),UNIT=(,P),

/! VOLUME=SER=(333005,333008,333010)

//D6 DD UNIT=3340,VOLUME=REF=+.D2,SPACE=(TRK, (5,2))

//D7 DD UNIT=3340,VOLUME=REF=DISK,SPACE=(TRK, (10,5))

* D1 defines a new data set named A01DD1. It is to be on volume 333001, which
is mounted on a 3330 Disk Storage.

» D2 defines an old data set named LIB1, which resides on a private volume,
123456. The volume is mounted on a 3340 Direct Access Storage.

» D3 defines an old data set named ABC. This data set is to be kept after this step
terminates. ABC is on volume 777777. This volume is to be mounted on the
same 3340 device used for D2.

* D4 defines an old data set named TAPE. The data set is on the five volumes
identified in the VOLUME parameter. The DEFER subparameter indicates that
the five volumes are to be mounted only after the data set is opened. The P
subparameter requests parallel mounting; that is, all five volumes are to be
mounted at the same time on five different 3420-5 Magnetic Tape Units.

» D5 defines an old data named DISK. This data set can be shared by another job;
the program only reads it. The data set is to be kept after this step. The system
determines the number of devices to be allocated from the number of volume
serials requested: in this case, three.

» D6 is a temporary data set, which is indicated by omission of a DSNAME
parameter. The system, therefore, assumes a disposition of NEW,DELETE. The
system is to place the data set on the volume used for D2 in STEP2, that is,
volume 123456.

» D7 is also a temporary data set. The backward reference for volume information
is to the dsname DISK, which was defined in D5 in STEP2. The system is to
place this data set on the three volumes 333005, 333008, and 333010.

Example 2

//STEPA EXEC PGM=TESTA
//Al DD UNIT=3400-5,VOLUME=SER=111111
//A2 DD UNIT=AFF=A1l,VOLUME=SER=222222

The system assigns one unit for both volumes. Volume 111111 is mounted first;
222222 is mounted when A2 is opened. This processing is the same for both tape
and direct access.

Example 3

15-8 05/390 V2R10.0 MVS JCL User’s Guide

Data Set Resources - Allocation

//STEPB EXEC PGM=TESTB
//B1 DD UNIT=(3330,2),VOLUME=SER=(A,B)
//B2 DD UNIT=AFF=B1,VOLUME=SER=(C,D)

The system allocates two units to B1; volumes A and B are mounted. B2 gets
allocated to the same two units; volumes C and D are mounted when the data set
for B2 is opened.

Example 4

//STEPC EXEC PGM=TESTC

//C1 DD UNIT=(3330,2),VOLUME=SER=(A,B)
//C2 DD UNIT=AFF=C1,VOLUME=SER=(C,D)
//C3 DD UNIT=3330,VOLUME=SER=B

STEPC shows a direct access example of volume affinity for volume B. The system
allocates volumes A and C to share one unit and volumes B and D to two other
units.

Example 5

//STEPD EXEC PGM=TESTD
//D1 DD UNIT=(3330,2),VOLUME=SER=(E,F)
//D2 DD UNIT=AFF=D1,VOLUME=SER=(G,H)

STEPD is a direct access example. If volume E is currently mounted and is
permanently resident or reserved, the system allocates a separate unit for volume E
because it cannot be dismounted. The system allocates one unit for volume G and
a second unit to be shared by volumes F and H. Therefore, three volumes are
used, instead of two, because of the permanently resident or reserved attributes.

Example 6

//STEPE EXEC PGM=TESTE
//E1 DD UNIT=3400-5,VOLUME=SER=(111111,222222)
//E2 DD UNIT=AFF=El,VOLUME=SER=(222222)

STEPE is a tape example. The system allocates two units: one for volume 111111

and the second for volume 222222. Note that only one data set can be open on a
tape volume at a time; to prevent an error when the data set for E2 is opened, the
data set for E1 must be closed before E2 is opened.

Example 7

//STEPF EXEC PGM=TESTF
//F1 DD UNIT=3330,VOLUME=SER=(ABCDEF,GHIJKL)
//F2 DD UNIT=AFF=F1,VOLUME=SER=(ABCDEF)

STEPF is a direct access example. The system ignores the volume affinity between
F1 and F2. Volume ABCDEF of both DD statements uses one unit while the other
volume, GHIJKL, uses a different unit.

Example 8

//STEPG EXEC PGM=TESTG

//61 DD UNIT=3400-5,VOLUME=SER=111111
/162 DD UNIT=AFF=G1,VOLUME=SER=111111
//G3 DD UNIT=AFF=G1,VOLUME=SER=222222

In STEPG, G2 and G3 request unit affinity to G1. The system allocates one unit to
be used for volume 111111 and volume 222222.

Example 9

Chapter 15. Data Set Resources - Allocation ~ 15-9

Data Set Resources - Allocation

//STEPH EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT==

//SYSIN DD DUMMY

//SYSUT1 DD DSN=INPUT.DATASET,DISP=SHR

//SYSUT2 DD DSN=OUTPUT.DATASET,DISP=(NEW,KEEP),LABEL=(1,SL),
// STORCLAS=LIBRARY,DATACLAS=PITTBRGH

STEPH copies an input data set to a new output data set on a system-managed
tape volume to be shipped offsite to Pittsburgh. The output data set is directed to a
system-managed tape library because of the storage class "LIBRARY".

Data class "PITTBRGH" defines the media type and recording format requirements
of the Pittsburgh data center. If either the media type or the recording-format
requirements of that center changes, the storage administrator modifies the
"PITTBRGH" data class definition but does not have to modify JCL.

Example 10

//STEPI EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=+

//SYSIN DD DUMMY

//SYSU